Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=1+x+x^2+x^3+..........+x^{2012}\)
+)Thay x=1 vào biểu thức đc:
\(A=1+1+1^2+1^3+..............+1^{2012}\)
Có 2013 số hạng
\(\Rightarrow A=1.2013=2013\)
b)\(B=1-x+x^2-x^3+..............-x^{2011}\)
\(\Rightarrow B=\left(1-x\right)+\left(x^2-x^3\right)+............+\left(x^{2010}-x^{2011}\right)\)
+)Thay x=1 vào biểu thức được:
\(B=\left(1-1\right)+\left(1^2-1^3\right)+...........+\left(1^{2010}-1^{2011}\right)\)
\(\Rightarrow B=0+0+......................+0=0\)
+)\(C=A+B\Rightarrow C=2013+0\Rightarrow C=2013\)
Vậy C=2013
Chúc bn học tốt
`a,`
`P(x)=2x^3-2x+x^2-x^3+3x+2`
`= (2x^3-x^3)+x^2+(-2x+3x)+2`
`= x^3+x^2+x+2`
`b,`
`H(x)+Q(x)=P(x)`
`-> H(x)=P(x)-Q(x)`
`-> H(x)=(x^3+x^2+x+2)-(x^3-x^2-x+1)`
`H(x)=x^3+x^2+x+2-x^3+x^2+x-1`
`= (x^3-x^3)+(x^2+x^2)+(x+x)+(2-1)`
`= 2x^2+2x+1`
Vậy, `H(x)=2x^2+2x+1.`
a.
\(P\left(x\right)=x^3+x^2+x+2\)
\(Q\left(x\right)=x^3-x^2-x+1\)
b.
\(H\left(x\right)+Q\left(x\right)=P\left(x\right)\Rightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(\Rightarrow H\left(x\right)=x^3+x^2+x+2-\left(x^3-x^2-x+1\right)\)
\(\Rightarrow H\left(x\right)=2x^2+2x+1\)
b) Ta có:
P(x) + H(x) = x4 - x3 + 2x2 + x + 1
=> H(x) = x4 - x3 + 2x2 + x + 1 - P(x)
=> H(x) = (x4 - x3 + 2x2 + x + 1) - (2x4 - x2 + x - 2)
=> H(x) = -x4 - x3 + 3x2 + 3
Vậy H(x) = -x4 - x3 + 3x2 + 3
\(H\left(-1\right)=K\left(2\right)\Rightarrow-1+3m+m^2=4+2\left(3m+2\right)+m^2\)
\(\Leftrightarrow-1+3m=8+6m\Leftrightarrow3m=-9\Leftrightarrow m=-3\)