Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: f(x) = ax3 + 4x(x2- x) - 4x + 8
= ax3 + 4x3 - 4x2 - 4x + 11 - 3
= x3 (a + 4) - 4x (x + 1) + 11 -3
f(x)=g(x) <=>x3 (a + 4) - 4x (x + 1) + 11 -3 = x3 - 4x ( bx +1) + c - 3
<=> \(\hept{\begin{cases}a+4=1\\x+1=bx+1\\c=11\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=1\\c=11\end{cases}}\)
Vậy a=-3, b=1 và c=11
a: x=1 là nghiệm nên f(1)=0
\(\Leftrightarrow a+4\cdot1\cdot0+8=0\)
=>a=-8
Vậy: \(f\left(x\right)=-8x^3+4x^3-4x+8=-4x^3-4x+8\)
c: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}1-4\left(b+1\right)+c-3=0\\8-8\left(2b+1\right)+c-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c-2-4b-4=0\\8-16b-8+c-3=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4b+c=6\\-16b+c=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\c=6\end{matrix}\right.\)
f(x)= ax^3+4x(x^2-1)+8 = ax^3 + 4x^3 - 4x + 8 = (a + 4)x^3 - 4x + 8
g(x)= x^3 - 4x(bx+1) +c-3 = x^3 - 4bx^2 - 4x + c - 3
Để f(x)=g(x) thì a + 4 = 1, -4b =0 và c - 3 = 8
=> a = -3, b = 0, c = 11
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$
f(x)= ax^3+4x(x^2-1)+8 = ax^3 + 4x^3 - 4x + 8 = (a + 4)x^3 - 4x + 8
g(x)= x^3 - 4x(bx+1) +c-3 = x^3 - 4bx^2 - 4x + c - 3
Để f(x)=g(x) thì a + 4 = 1, -4b =0 và c - 3 = 8
=> a = -3, b = 0, c = 11