Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x_0\ne0:\)
Nếu \(f\left(x_0\right)=0\Rightarrow ax_0^2+bx_0+c=0\)
Khi đó \(g\left(\frac{1}{x_0}\right)=c\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+b.x_0+ax_0^2}{x^2_0}=0\)
Bài này đơn giản lắm bạn! Lưu ý mk thay đổi x0 thành m cho dễ ghi nha
Ta có \(f\left(m\right)=am^2+bm+c=0\)
Lại có \(g\left(\frac{1}{m}\right)=c\cdot\frac{1}{m^2}+b\cdot\frac{1}{m}+a=\frac{c}{m^2}+\frac{bm}{m^2}+\frac{am^2}{m^2}=\frac{am^2+bm+c}{m^2}=0\left(ĐPCM\right)\)
Cho phương trình \(x^3-x-1=0\). Giả sử x0 là một nghiệm của phương trình đã cho.
a)Chứng minh rằng x0>0
b)Tính giá trị biểu thức \(P=\frac{x_0^2-1}{x_{0^3}}.\sqrt{2x^2_0+3x_0+2}\)
\(f\left(x_0\right)=ax_0^2+bx_0+c=0\)
\(g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+bx_0+ax_0^2}{x_0^2}=\frac{0}{x_0^2}=0\left(đpcm\right)\)