Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-2x-y+3y-1\)
\(B=-2x^2+3y^2-5x+y+3\)
a) \(A+B=\left(x^2-2x-y+3y-1\right)+\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y+3y-1-2x^2+3y^2-5x+y+3\)
\(=\left(x^2-2x^2\right)+3y^2+\left(-2x-5x\right)+\left(-y+3y+y\right)+3-1\)
\(=-x^2+3y^2-7x+3y+2\)
\(A-B=\left(x^2-2x-y+3y-1\right)-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y+3y-1+2x^2-3y^2+5x-y-3\)
\(=\left(x^2+2x^2\right)-3y^2+\left(-2x+5x\right)+\left(-y+3y-y\right)-1-3\)
\(=3x^2-3y+3x+y-4\)
b) tại x=1 ; x=-2 ta có:
\(A=1^2-2.1-\left(-2\right)+3.\left(-2\right)-1\)
\(A=1-2+2-6-1=-6\)
Vậy -6 là giá trị của đa thức A tại x=1 y=-2
a) \(A+B=\left(x^2-2x-y+3y-1\right)+\left(-2x^2+3y^2-5x+y+3\right)\)
\(=-x^2+3y^2-7x+3y+2\)
\(A-B=\left(x^2-2x-y+3y-1\right)-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=3x^2-3y^2+3x+2y-4\)
b) \(A\left(1;-2\right)=1^2-2\cdot1-\left(-2\right)+3\cdot\left(-2\right)-1\)
\(=1-2+2-6-1\)
\(=-6\)
a) Ta có : \(C\left(x\right)+B\left(x\right)=A\left(x\right)\)
\(\Leftrightarrow C\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(=x^5+3x^4-2x^3-9x^2+11x-6-\left(x^5+3x^4-2x^3-x-8\right)\)
\(=x^5+3x^4-2x^3-9x^2+11x-6-x^5-3x^4+2x^3+x+8\)
\(=-9x^2+12x+2\)
b) Ta có : \(C\left(x\right)=2x+2\)
\(\Leftrightarrow-9x^2+12x+2=2x+2\)
\(\Leftrightarrow\) \(-9x^2+10x=0\)
\(\Leftrightarrow\) \(x\left(-9x+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\frac{10}{9}\end{cases}}\)
c) Giả sử : \(C\left(x\right)=2012\)
\(\Leftrightarrow\)\(-9x^2+12x+2=2012\)
\(\Leftrightarrow-9x^2+12x-2010=0\)
\(\Leftrightarrow\)\(9x^2-12x+2010=0\)
\(\Leftrightarrow\left(9x^2-2.3x.2+4\right)+2006=0\)
\(\Leftrightarrow\left(3x-2\right)^2+2006=0\)(vô nghiệm vì \(\left(3x-2\right)^2\ge0\forall x\inℝ\))
Do đó với x nguyên thì C(x) không thể nhận giá trị bằng 2012.
\(a,Q\left(\dfrac{1}{2}\right)=-3.\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}-2\)
\(Q\left(\dfrac{1}{2}\right)=-3.\dfrac{1}{4}+\dfrac{1}{2}-2\)
\(Q\left(\dfrac{1}{2}\right)=-\dfrac{3}{4}+\left(-\dfrac{3}{2}\right)\)
\(Q\left(\dfrac{1}{2}\right)=-\dfrac{9}{4}\)
\(b,P\left(1\right)=-3.1^2+2.1+1\)
\(P\left(1\right)=-3.1+2+1\)
\(P\left(1\right)=-3+2+1\)
\(P\left(1\right)=0\)
Vậy x = 1 là nghiệm của đa thức P(x)
\(c,H\left(x\right)=\left(-3x^2+2x+1\right)-\left(-3x^2+x-2\right)\)
a/tại x=1 ta có b/A=B+C
A=0 C=A-B
B=1 C=0-1
C=-1
Bạn ah, x= -1 cơ mà. nhưng mk vẫn tk cho pn nha bởi vì bạn trả lời mk nhanh nhất >.<