Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7.
Thể tích:
\(V=\pi\int\limits^{\frac{\pi}{2}}_0sin^2xdx=\frac{\pi}{2}\int\limits^{\frac{\pi}{2}}_0\left(1-cos2x\right)dx=\frac{\pi}{2}\left(x-\frac{1}{2}sin2x\right)|^{\frac{\pi}{2}}_0=\frac{\pi^2}{4}\)
8.
\(z=\frac{z-17i}{5-i}\Leftrightarrow\left(5-i\right)z=z-17i\)
\(\Leftrightarrow z\left(i-4\right)=17i\Rightarrow z=\frac{17i}{i-4}=1-4i\)
Rốt cuộc câu này hỏi modun hay phần thực vậy ta?
Phần thực bằng 1
Môđun \(\left|z\right|=\sqrt{17}\)
9.
\(\left(1-3i\right)z=8+6i\Rightarrow z=\frac{8+6i}{1-3i}=-1+3i\)
\(\Rightarrow\left|z\right|=\sqrt{\left(-1\right)^2+3^2}=\sqrt{10}\)
10.
\(\left(1+i\right)^2\left(2-i\right)z=8+i+\left(1+2i\right)z\)
\(\Leftrightarrow2i\left(2-i\right)z-\left(1+2i\right)z=8+i\)
\(\Leftrightarrow\left(4i+2-1-2i\right)z=8+i\)
\(\Leftrightarrow z=\frac{8+i}{2i+1}=2-3i\)
Phần thực \(a=2\)
11.
Điểm biểu diễn số phức là điểm có tọa độ \(\left(-1;-2\right)\)
4.
\(I=\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{dx}{sin^2x}=-cotx|^{\frac{\pi}{2}}_{\frac{\pi}{4}}=1\)
5.
\(I=\int\limits^a_2\frac{2x-1}{1-x}dx=\int\limits^a_2\left(-2-\frac{1}{x-1}\right)dx=\left(-2x-ln\left|x-1\right|\right)|^a_2=-2a-ln\left|a-1\right|+4\)
\(\Rightarrow-2a+4-ln\left|a-1\right|=-4-ln3\Rightarrow a=4\)
6.
Phương trình hoành độ giao điểm:
\(x^3=x^5\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Diện tích hình phẳng:
\(S=\int\limits^0_{-1}\left(x^5-x^3\right)dx+\int\limits^1_0\left(x^3-x^5\right)dx=\frac{1}{6}\)
3.
\(x.f'\left(x\right)+\left(x+1\right)f\left(x\right)=3x^2.e^{-x}\)
\(\Leftrightarrow x.e^x.f'\left(x\right)+\left(x+1\right).e^x.f\left(x\right)=3x^2\)
\(\Leftrightarrow\left[x.e^x.f\left(x\right)\right]'=3x^2\)
Lấy nguyên hàm 2 vế:
\(\Rightarrow x.e^x.f\left(x\right)=\int3x^2dx=x^3+C\)
\(f\left(1\right)=\frac{1}{e}\Rightarrow1.e.\frac{1}{e}=1^3+C\Rightarrow C=0\)
\(\Rightarrow x.e^x.f\left(x\right)=x^3\Rightarrow f\left(x\right)=\frac{x^2}{e^x}\)
\(\Rightarrow f\left(2\right)=\frac{4}{e^2}\)
4.
Gọi (Q) là mặt phẳng chứa d và vuông góc (P)
(Q) nhận \(\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_d}\right]=\left(-3;2;1\right)\) là 1 vtpt
Phương trình (Q):
\(-3x+2\left(y+1\right)+1\left(z-2\right)=0\Leftrightarrow-3x+2y+z=0\)
d' là hình chiếu của d lên (P) nên là giao tuyến của (P) và (Q) có pt thỏa mãn:
\(\left\{{}\begin{matrix}x+y+z+3=0\\-3x+2y+z=0\end{matrix}\right.\)
\(\Rightarrow d'\) đi qua \(A\left(0;3;-6\right)\) và nhận \(\overrightarrow{u_{d'}}=\left[\overrightarrow{n_{\left(Q\right)}};\overrightarrow{n_{\left(P\right)}}\right]=\left(1;4;-5\right)\) là 1 vtcp
Phương trình chính tắc d': \(\frac{x}{1}=\frac{y-3}{4}=\frac{z+6}{-5}\)
1/
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=x^2+x\end{matrix}\right.\)
\(\Rightarrow I=\left(x^2+x\right)lnx|^3_e-\int\limits^3_e\left(x+1\right)dx=\left(x^2+x\right)lnx|^3_e-\left(\frac{1}{2}x^2+x\right)|^3_e\)
\(=12ln3-\frac{e^2}{2}-\frac{15}{2}\)
2/
Đặt \(z=x+yi\)
\(\left|x+1+\left(y-1\right)i\right|=\left|x+\left(y-3\right)i\right|\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2=x^2+\left(y-3\right)^2\)
\(\Leftrightarrow2x+4y-7=0\Rightarrow x=\frac{7}{2}-2y\)
Ta có: \(A=\left|z-i\right|=\left|x+\left(y-1\right)i\right|=\sqrt{x^2+\left(y-1\right)^2}\)
\(=\sqrt{\left(\frac{7}{2}-2y\right)^2+\left(y-1\right)^2}=\sqrt{5y^2-16y+\frac{53}{4}}=\sqrt{5\left(y-\frac{8}{5}\right)^2+\frac{9}{20}}\ge\sqrt{\frac{9}{20}}\)
\(\Rightarrow\left|z-i\right|_{min}=\sqrt{\frac{9}{20}}\)
46.
Giả sử hình vuông ABCD tâm I, do I là tâm đối xứng hình vuông nên là tâm đối xứng đồ thị
\(\Rightarrow\) I là điểm uốn có tọa độ \(I\left(0;0\right)\) của hàm số
Do A đối xứng C, B đối xứng D qua I (đồng thời là gốc tọa độ) nên trong các cặp điểm AC và BD luôn có 2 điểm mang hoành độ dương và 2 điểm mang hoành độ âm, ko mất tính tổng quát, giả sử A và B mang hoành độ dương. Gọi \(A\left(a;a^3-3a\right)\) ; \(B\left(b;b^3-3b\right)\) với \(b>a>0\)
\(\Rightarrow C\left(-a;-a^3+3a\right)\) ; \(D\left(-b;-b^3+3b\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{CA}=\left(2a;2a^3-6a\right)\\\overrightarrow{DB}=\left(2b;2b^3-6b\right)\end{matrix}\right.\)
ABCD là hình vuông \(\Rightarrow\left\{{}\begin{matrix}AC=BD\\AC\perp BD\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2+\left(a^3-3a\right)^2=b^2+\left(b^3-3b\right)^2\\ab+\left(a^3-3a\right)\left(b^3-3b\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2+a^2\left(a^2-3\right)^2=b^2+b^2\left(b^2-3\right)^2\\1+\left(a^2-3\right)\left(b^2-3\right)=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a^2-3=x>-3\\b^2-3=y>-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+3+x^2\left(x+3\right)=y+3+y^2\left(y+3\right)\\xy=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+xy+y^2+3x+3y+1\right)=0\\xy=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2+3\left(x+y\right)+2=0\\xy=-1\end{matrix}\right.\) (do \(b>a>0\Rightarrow x\ne y\))
\(\Rightarrow\left[{}\begin{matrix}x+y=-1;xy=-1\\x+y=-2;xy=-1\end{matrix}\right.\)
Sử dụng Viet đảo ta được
\(\left(x;y\right)=\left(\dfrac{-1-\sqrt{5}}{2};\dfrac{-1+\sqrt{5}}{2}\right);\left(\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right);\left(-1-\sqrt{2};-1+\sqrt{2}\right);\left(-1+\sqrt{2};-1-\sqrt{2}\right)\)
Do \(y>x\) nên chỉ có 2 cặp thỏa mãn. Mỗi giá trị x; y cho đúng 1 giá trị a; b dương tương ứng, nên có 2 cặp A; B thỏa mãn \(\Rightarrow\) có 2 hình vuông thỏa mãn (thực ra có thể tìm chính xác tọa độ A; B nhưng nó hơi xấu, ví dụ ứng với \(x=\dfrac{-1-\sqrt{5}}{2}\Rightarrow a^2=x+3=\dfrac{5-\sqrt{5}}{2}\Rightarrow a=\sqrt{\dfrac{5-\sqrt{5}}{2}}\) ko rút gọn được
47.
- Nhận xét quan trọng: hai mặt phẳng (a) và Oxy vuông góc (thấy ngay bằng dấu hiệu cả hai đều "khuyết z")
Từ nhận xét trên, ta thấy khoảng cách từ điểm H thuộc Oxy tới (a) chính là khoảng cách từ H tới d, với d là giao tuyến của (a) và mp Oxy.
Gọi K là hình chiếu vuông góc của M xuống Oxy \(\Rightarrow MK\perp Oxy\) với \(K\left(4;-2;0\right)\)
\(\Rightarrow MK\perp d\) ; mà \(d\perp MH\) theo giả thiết \(\Rightarrow d\perp\left(MHK\right)\)
\(\Rightarrow d\perp KH\) hay tam giác AHK vuông tại H
\(\Rightarrow\) Quỹ tích H là đường tròn đường kính AK thuộc mặt phẳng Oxy
Bây giở ta có 1 bài toán hình học phẳng đơn giản : cho 1 đường thằng cố định nằm ngoài đường tròn (O), tìm điểm M thuộc (O) sao cho khoảng cách từ M tới d đạt min. Lời giải đơn giản là qua tâm O đường tròn vẽ đường thẳng d' vuông góc d, d' cắt (O) tại A (với A nằm giữa O và d), khi đó khoảng cách từ A tới d sẽ ngắn nhất.
Trong bài toán này, để khỏi cần tính toán nhiều thì ta tính nhanh khoảng cách nhỏ nhất như sau:
Gọi I là trung điểm AK \(\Rightarrow I\left(1;2;0\right)\)
\(\Rightarrow d\left(H;\left(\alpha\right)\right)_{min}=d\left(I;\left(\alpha\right)\right)-\dfrac{AK}{2}\) (có biết tại sao có biểu thức này không?) \(=15\)
9.
Vật dừng lại khi \(v=0\Leftrightarrow160-10t=0\Rightarrow t=16\)
\(s=\int\limits^{t_2}_{t_1}v\left(t\right)dt=\int\limits^{16}_0\left(160-10t\right)dt=\left(160t-5t^2\right)|^{16}_0=1280\left(m\right)\)
10.
Đặt \(z=x+yi\)
\(\frac{x+yi}{1-2i}+x-yi=2\Leftrightarrow\left(1+2i\right)\left(x+yi\right)+5x-5yi=10\)
\(\Leftrightarrow6x-2y+\left(2x-4y\right)i=10\)
\(\Rightarrow\left\{{}\begin{matrix}6x-2y=10\\2x-4y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow z=2+i\)
\(\Rightarrow w=\left(2+i\right)^2-\left(2+i\right)=1+3i\)
Phần thực bằng 1
11.
Đặt \(z=x+yi\)
\(\left|x+\left(y-1\right)i\right|=\left|\left(1+i\right)\left(x+yi\right)\right|\)
\(\Leftrightarrow\left|x+\left(y-1\right)i\right|=\left|x-y+\left(x+y\right)i\right|\)
\(\Leftrightarrow x^2+\left(y-1\right)^2=\left(x-y\right)^2+\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2+2y-1=0\)
Hoặc dạng chính tắc:
\(x^2+\left(y+1\right)^2=2\)
6.
Hổng hiểu đề bài?
Là diện tích hình phẳng giới hạn bởi các đường \(y=x^2-4;y=x^2-2x;x=-3;x=-2\) đúng ko?
Làm theo đề này nhé
Hoành độ giao điểm: \(x^2-4=x^2-2x\Leftrightarrow x=2\notin\left[-3;-2\right]\)
\(x^2-4=0\Leftrightarrow x=\pm2\)
\(x^2-2x=0\Rightarrow x=\left\{0;2\right\}\notin\left[-3;-2\right]\)
Diện tích:
\(S=\int\limits^{-2}_{-3}\left(x^2-2x-\left(x^2-4\right)\right)dx=\int\limits^{-2}_{-3}\left(4-2x\right)dx=\left(4x-x^2\right)|^{-2}_{-3}=9\)
7.
Đề này thì ko dịch nổi
8.
Phương trình hoành độ giao điểm:
\(x^2-x=x\Leftrightarrow x^2-2x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Thể tích:
\(V=\pi\int\limits^2_0\left[x^2-\left(x^2-x\right)^2\right]dx=\pi\int\limits^2_0\left(-x^4+2x^3\right)dx\)
\(=\pi\left(-\frac{1}{5}x^5+\frac{1}{2}x^4\right)|^2_0=\frac{8\pi}{5}\)
Chọn A