Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5-3x}{1-x^2}=\dfrac{10-6x}{2\left(1-x^2\right)}=\dfrac{9\left(1-x^2\right)+9x^2-6x+1}{2\left(1-x^2\right)}=\dfrac{9}{2}+\dfrac{\left(3x-1\right)^2}{2\left(1-x^2\right)}\ge\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{3}\)
Đề bài ko đúng
1.
x(x+1)(x2+x+3) = (x2+x)(x2+x+3)
đặt x2+x = t
=> t(t+3)=4
=>t;t+3 thuộc Ư(4)
=> t;t+3 thuộc -1;1-2;2-4;4
tự xét lần lượt các TH nha bạn
a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5
=x^5-y^5=VP
=>dpcm
hc tốt
hơi ngán dạng này :((((
a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)
b,
\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)
c,
\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,
\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))
mk thực sự cần bn hiểu bài
a) = x(x2 -4) -(x3 - 27) = x3 -4x -x3 +27
= 27-4x thay x = 1/4 có;
= 26
( nếu hiu dc mk lam tip cho)
\(2\left(x-2\right)\left(x+3\right)-x^2+4=0\)
\(2\left(x^2+3x-2x-6\right)-x^2+4=0\)
\(2x^2+6x-4x-12-x^2+4=0\)
\(x^2+2x-8=0\)
\(x^2+4x-2x-8=0\)
\(x\left(x+4\right)-2\left(x+4\right)=0\)
\(\left(x+4\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+4=0\rightarrow x=\left(-4\right)\\x-2=0\rightarrow x=2\end{cases}}\)
3/
a/ \(2\left(x+1\right)^2-3\left(x-1\right)^2+\left(x+2\right)\left(5-x\right)\)
\(=2\left(x^2+2x+1\right)-3\left(x^2-2x+1\right)+\left(5x-x^2+10-2x\right)\)
\(=2x^2+4x+2-3x^2+6x-3+5x-x^2+10-2x\)
\(=-2x^2+13x+9\)
b/ \(\left(3x-1\right)^3+\left(3x-1\right)^3-6x^2+9\)
\(=2\left(3x-1\right)^3-6x^2+9\)
\(=2\left(\left(3x\right)^3-3\left(3x\right)^2\cdot1+3\cdot3x\cdot1-1\right)-6x^2+9\)
\(=2\left(27x^3-27x^2+9x-1\right)-6x^2+9\)
\(=54x^3-54x^2+18x-2-6x^2+9\)
\(=54x^3-60x^2+18x+7\)
Số hơi dài, nên dễ tính sai -,- tính mik hay cẩu thả có j sai ibbb ạ
Bài I :
1 ) \(3x\left(x-5\right)-\left(3x+2\right)\left(3x-2\right)=31\)
\(\Leftrightarrow3x^2-15x-9x^2+4-31=0\)
\(\Leftrightarrow-6x^2-15x-27=0\)
Phương trình vô nghiệm .
2 )
\(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=16\)
\(\Leftrightarrow18x=18\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
Bài II :
\(B=n\left(n+5\right)-\left(n-3\right)\left(n+20\right)\)
\(=n^2+5n-n^2-17n+60\)
\(=-12n+60\)
\(=-12\left(n-5\right)\)
Vì \(-12\) chia hết cho 6 \(\Rightarrow-12\left(n-5\right)\) chia hết cho 6 .
Vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+20\right)\) chia hết cho 6 (đpcm)
Đặt \(\sqrt{1+x}=a;\sqrt{1-x}=b\), \(a,b>0\)
Áp dụng BĐT AG-GM:
\(\Rightarrow A=\dfrac{a^2+4b^2}{ab}\ge\dfrac{2\sqrt{a^2\cdot4b^2}}{ab}=4\)
Dấu "=" \(\Leftrightarrow1+x=4\left(1-x\right)\Leftrightarrow x=\dfrac{3}{5}\left(N\right)\)
Tick hộ nha