K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+abc+abc+b^2c+bc^2+a^2c+abc+ac^2-abc=0\)

\(\Leftrightarrow ab\left(a+b+c\right)+bc\left(a+b+c\right)+ac\left(a+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc\right)+ac\left(a+c\right)=0\)

\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ac\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

\(\circledast Với:a=-b\) , ta có :

\(P=\left(-b+b\right)\left(b^3+c^3\right)\left(c^5+a^5\right)=0\)

\(\circledast Với:b=-c\) , ta có :

\(P=\left(a+b\right)\left(b^3-b^3\right)\left(c^5+a^5\right)=0\)

\(\circledast Với:c=-a\) , ta có :

\(P=\left(a+b\right)\left(b^3+c^3\right)\left(-a^5+a^5\right)=0\)

KL..............

12 tháng 8 2018

    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)

\(\Rightarrow\left(ab+ac+bc\right)\left(a+b+c\right)=abc\)

\(\Rightarrow a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc=âbc\)

\(\Rightarrow\left(a^2b+ab^2\right)+\left(ac^2+bc^2\right)+\left(a^2c+2abc+b^2c\right)=0\)

\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)

\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+\left(ac+bc\right)\left(a+b\right)=0\)

\(\Rightarrow\left(a+b\right)\left(ab+c^2+ac+bc\right)=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a=-b\\\frac{b=-c}{a=-c}\end{cases}}\)

Từ đó: P = 0.

Mình giải hơi tắt. Mong bạn hiểu bài.

Chúc bạn học tốt.

19 tháng 3 2017

bạn khai thác gt ta đc : (b+c)(a+b)(a+c)=0

b=-c

a=-b

a=-1

M=(a^3+b^3)(b^7+c^7)(a^2011+|c^2011)

ta có 3 trường hợp

b=-c nên (b^7+c^7=0)

a=-b nên (a^3+b^3)=0

a=-1nên (a^2011+b^2011)=0

M=0

7 tháng 8 2017

bạn giúp mik câu hỏi này

Cho a>=3, a+b>=5

tìm GTNN của

a^2+b^2

13 tháng 10 2019

Sử dụng: 

\(A^3+B^3+C^3-3ABC=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\) (1)

Áp dụng vào bài:

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)\)

\(=\left(a-1+b-2+c-3\right)\)\(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\)

\(+\left(a-1\right)\left(b-2\right)+\left(a-1\right)\left(c-3\right)+\left(b-2\right)\left(c-3\right)\)]

<=> \(0-3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

( vì \(a-1+b-2+c-3=a+b+c-6=6-6=0\))

<=> \(\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

<=>  a = 1 hoặc b = 2 hoặc c = 3.

Không mất tính tổng quát: g/s : a = 1

Khi đó: b + c =5

Ta có:  \(T=\left(b-2\right)^{2n+1}+\left(c-3\right)^{2n+1}\)

\(=\left(b-2+c-3\right).A\)

\(=\left(b+c-5\right).A\)

\(=0.A=0\)

Với \(A=\left(b-2\right)^{2n}-\left(b-2\right)^{2n-1}\left(c-3\right)+\left(b-2\right)^{2n-2}\left(c-3\right)^2-...+\left(c-3\right)^{2n}\)

Tương tự b = 2; c= 3 thì T = 0.

Vậy T = 0.

21 tháng 1 2018

a)        \(a+\frac{1}{a}=3\)

\(\Leftrightarrow\)\(\left(a+\frac{1}{a}\right)^2=9\)

\(\Leftrightarrow\)\(a^2+2+\frac{1}{a^2}=9\)

\(\Leftrightarrow\)\(a^2+\frac{1}{a^2}=7\)

  Ta có:      \(\left(a+\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}\right)=3.7\)

\(\Leftrightarrow\)\(a^3+\frac{1}{a}+a+\frac{1}{a^3}=21\)

\(\Leftrightarrow\)\(a^3+\frac{1}{a^3}=21-3=18\)

Ta lại có:    \(\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)=7.18\)

\(\Leftrightarrow\)\(a^5+\frac{1}{a}+a+\frac{1}{a^5}=126\)

\(\Leftrightarrow\)\(a^5+\frac{1}{a^5}=126-3=123\)