Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(ab+ac+bc\right)\left(a+b+c\right)=abc\)
\(\Rightarrow a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc=âbc\)
\(\Rightarrow\left(a^2b+ab^2\right)+\left(ac^2+bc^2\right)+\left(a^2c+2abc+b^2c\right)=0\)
\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)
\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+\left(ac+bc\right)\left(a+b\right)=0\)
\(\Rightarrow\left(a+b\right)\left(ab+c^2+ac+bc\right)=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=-b\\\frac{b=-c}{a=-c}\end{cases}}\)
Từ đó: P = 0.
Mình giải hơi tắt. Mong bạn hiểu bài.
Chúc bạn học tốt.
bạn khai thác gt ta đc : (b+c)(a+b)(a+c)=0
b=-c
a=-b
a=-1
M=(a^3+b^3)(b^7+c^7)(a^2011+|c^2011)
vì
ta có 3 trường hợp
b=-c nên (b^7+c^7=0)
a=-b nên (a^3+b^3)=0
a=-1nên (a^2011+b^2011)=0
M=0
Sử dụng:
\(A^3+B^3+C^3-3ABC=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\) (1)
Áp dụng vào bài:
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)\)
\(=\left(a-1+b-2+c-3\right)\)[ \(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\)
\(+\left(a-1\right)\left(b-2\right)+\left(a-1\right)\left(c-3\right)+\left(b-2\right)\left(c-3\right)\)]
<=> \(0-3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
( vì \(a-1+b-2+c-3=a+b+c-6=6-6=0\))
<=> \(\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
<=> a = 1 hoặc b = 2 hoặc c = 3.
Không mất tính tổng quát: g/s : a = 1
Khi đó: b + c =5
Ta có: \(T=\left(b-2\right)^{2n+1}+\left(c-3\right)^{2n+1}\)
\(=\left(b-2+c-3\right).A\)
\(=\left(b+c-5\right).A\)
\(=0.A=0\)
Với \(A=\left(b-2\right)^{2n}-\left(b-2\right)^{2n-1}\left(c-3\right)+\left(b-2\right)^{2n-2}\left(c-3\right)^2-...+\left(c-3\right)^{2n}\)
Tương tự b = 2; c= 3 thì T = 0.
Vậy T = 0.
a) \(a+\frac{1}{a}=3\)
\(\Leftrightarrow\)\(\left(a+\frac{1}{a}\right)^2=9\)
\(\Leftrightarrow\)\(a^2+2+\frac{1}{a^2}=9\)
\(\Leftrightarrow\)\(a^2+\frac{1}{a^2}=7\)
Ta có: \(\left(a+\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}\right)=3.7\)
\(\Leftrightarrow\)\(a^3+\frac{1}{a}+a+\frac{1}{a^3}=21\)
\(\Leftrightarrow\)\(a^3+\frac{1}{a^3}=21-3=18\)
Ta lại có: \(\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)=7.18\)
\(\Leftrightarrow\)\(a^5+\frac{1}{a}+a+\frac{1}{a^5}=126\)
\(\Leftrightarrow\)\(a^5+\frac{1}{a^5}=126-3=123\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+abc+abc+b^2c+bc^2+a^2c+abc+ac^2-abc=0\)
\(\Leftrightarrow ab\left(a+b+c\right)+bc\left(a+b+c\right)+ac\left(a+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc\right)+ac\left(a+c\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ac\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
\(\circledast Với:a=-b\) , ta có :
\(P=\left(-b+b\right)\left(b^3+c^3\right)\left(c^5+a^5\right)=0\)
\(\circledast Với:b=-c\) , ta có :
\(P=\left(a+b\right)\left(b^3-b^3\right)\left(c^5+a^5\right)=0\)
\(\circledast Với:c=-a\) , ta có :
\(P=\left(a+b\right)\left(b^3+c^3\right)\left(-a^5+a^5\right)=0\)
KL..............