Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+2^3+...+2^{52}+2^{53}\)
Suy ra \(2.S=2+2^2+2^3+2^4+....+2^{53}+2^{54}\)
Nên \(2.S-S=2^{54}-1\)hay \(S=2^{54}-1\)
Vậy \(S=2^{54}-1\)
b) 2.2.2.3.3.62.3 = 2.2.2.3.3.6.6.3 = 2.2.2.3.3.3.2.3.2.3 = 25.35
\(5^x=125\)
\(5^x=5^3\)
=> x=3 ( vì cơ số 5>1)
\(3^2.x=81\)
\(9x=81\)
\(x=81:9\)
\(x=9\)
\(\Rightarrow3S=1.2.3+2.3.3+3.4.3+......+39.40.3\)\(.3\)
\(\Rightarrow3S=1.2.3+2.3.\left(4-1\right)+...+39.40.\left(41-38\right)\)
\(\Rightarrow3S=1.2.3+2.3.4-1.2.3+.....+39.40.41-38.39.40\)
\(\Rightarrow3S=39.40.41\)
\(\Rightarrow S=\frac{39.40.41}{3}\)
\(\Rightarrow S=21320\)
Đặt \(A=5+5^2+5^3+....+5^{199}+5^{200}\)
\(\Leftrightarrow5A=5\left(5+5^2+5^3+....+5^{199}+5^{200}\right)\)
\(\Leftrightarrow5A=5^2+5^3+5^4+....+5^{200}+5^{201}\)
\(\Leftrightarrow5A-A=\left(5^2+5^3+5^4+....+5^{200}+5^{201}\right)-\left(5+5^2+5^3+....+5^{199}+5^{200}\right)\)
\(\Leftrightarrow4A=5^{201}-5\)
\(\Leftrightarrow A=\frac{5^{201}-5}{4}\)
A=2+22+23+24+....+230
=(2+22+23)+(24+25+26)+...+(228+229+230)
=1(2+22+23)+23(2+22+23)+...+227(2+22+23)
=1.7+23.7+25.7+...+227.7
=7(1+23+25+...+227)
vì 7:7-->A:7
\(A=2+2^2+2^3+2^4+...+2^{29}+2^{30}\)
\(=\left(2^{ }+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)
\(=2.\left(1+2+2^2\right)+2^{^{ }4}.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{28}.7\)
\(=7.\left(2+2^4+...+2^{28}\right)\)
\(\Rightarrow A⋮7\)
\(2^2+4^2+6^2+...+24^2=2^2.\left(1^2+2^2+3^2+...+12^2\right)\)