Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính S=a+b+c+d+e biết
a) c:b=3/2;a/d=1/4;2b=a+c;c-a=26;2a+d=e
b) c:a=7/2;b/d=3/8;d=a+2b;d-a=54;4b+d=2e
Ta có \(\frac{a}{b}+\frac{b}{a}\ge2\)
Cách 1 : Áp dụng bất đẳng thức Cô si ta có
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\times\frac{b}{a}}\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\left(\text{đ}pcm\right)\)
Cách 2 : Xét hiệu \(\frac{a}{b}+\frac{b}{a}-2\) (với trường hợp a ,b cùng dấu)
Ta có \(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)
\(=\frac{\left(a^2+b^2-2ab\right)}{ab}\)
\(=\frac{\left(a-b\right)^2}{ab}\)
Vì \(\left(a-b\right)^2\ge0\) dấu = khi \(a-b=0\Leftrightarrow a=b\)
\(a,b>0\Rightarrow ab>0\)
\(\Rightarrow\frac{\left(a-b\right)^2}{ab}\ge0\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\left(\text{đ}pcm\right)\)
- Xét: a : b = 9 : 4 \(\Rightarrow\frac{a}{9}=\frac{b}{4}\)\(\Rightarrow\frac{a}{45}=\frac{b}{20}\)
b : c = 5 : 3 \(\Rightarrow\frac{b}{5}=\frac{c}{3}\)\(\Rightarrow\frac{b}{20}=\frac{c}{12}\)
=> \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
- Đặt: \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\hept{\begin{cases}a=45.k\\b=20.k\\c=12.k\end{cases}}\)
-Thay a = 45.k, b = 20.k , c = 12.k vào \(\frac{a-b}{b-c}\) ;ta có:
\(\frac{a-b}{b-c}=\frac{45.k-20.k}{20.k-12.k}=\frac{25.k}{8.k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
Quy đồng mẫu số (nhân cả 2 vế với abc) ta được:
a2c + b2a + c2b ≧ b2c+c2a+a2b
a2c -abc + b2a - a2b + c2b - b2c- c2a+abc ≧ 0
-ac(b-a) +ab(b-a) +cb(c-b) -ac(c-b) ≧ 0
-a(c-b)(b-a) +c(b-a)(c-b) ≧ 0
(c-b)(b-a)(c-a) ≧ 0 luôn đúng (vì 0≤a≤b≤c)
Vậy a/b +b/c + c/a ≧ b/a +c/b+a/c