K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, ta có \(\cos^2\alpha\)+  \(\sin^2\alpha\)= 1

                  1/5 + \(\cos^2\alpha\)= 1

                               \(\cos^2\alpha\)= 4/5

\(4\cos^2\alpha\)+6 \(\sin^2\alpha\)= 4 . 4/5 + 6.1/5=22/5

b, \(\sin\alpha\)= 2/3 

\(\sin^2\alpha\)= 4/9

\(\cos^2\alpha=\frac{5}{9}\)

\(5\cos^2\alpha+2\sin^2=\frac{5.5}{9}+\frac{2.4}{9}=\frac{33}{9}\)

#mã mã#

a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)

                  \(\frac{1}{3}\)\(\frac{\sin\alpha}{\cos\alpha}\)

                    \(\cos\alpha\)= 3 \(\sin\alpha\)

ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)\(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)\(\frac{4\sin\alpha}{2\sin\alpha}\)\(2\)

#mã mã#

7 tháng 10 2015

ap dung sin2a+cos2a=1 =>4cos2a -6sin2a=4 -4sin2a-6sin2a=4-10sin2a=4-10.1/25=3,6

25 tháng 6 2019

a/ Có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=\frac{4}{5}\)

\(\Rightarrow4\cos^2\alpha-6\sin^2\alpha=4.\frac{4}{5}-6.\frac{1}{5}=\frac{7}{5}\)

b/ làm tương tự nhưng thay \(\sin^2\alpha=\frac{4}{9}\)

NV
14 tháng 10 2020

\(\frac{sin^2a-cos^2a+cos^4a}{cos^2a-sin^2a+sin^4a}=\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^2a-cos^2a.sin^2a}{cos^2a-sin^2a.cos^2a}\)

\(=\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^2a.sin^2a}{cos^2a.cos^2a}=tan^4a\)

\(sin^4a+cos^4a=\left(sin^2a+cos^2a\right)^2-sin^2a.cos^2a=1-2sin^2a.cos^2a\)

NV
29 tháng 8 2020

\(M=\frac{\frac{sina}{cosa}+\frac{cosa}{cosa}}{\frac{sina}{cosa}-\frac{cosa}{cosa}}=\frac{tana+1}{tana-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=...\)

\(N=\frac{\frac{sina.cosa}{cos^2a}}{\frac{sin^2a}{cos^2a}-\frac{cos^2a}{cos^2a}}=\frac{tana}{tan^2a-1}=...\) (thay số bấm máy)

\(P=\frac{\frac{sin^3a}{cos^3a}+\frac{cos^3a}{cos^3a}}{\frac{2sina.cos^2a}{cos^3a}+\frac{cosa.sin^2a}{cos^3a}}=\frac{tan^3a+1}{2tana+tan^2a}=...\)