Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{41}=\dfrac{b}{29}=\dfrac{c}{30}=\dfrac{a+b}{41+29}=\dfrac{700}{70}=10\)
Do đó: a=410; b=290; c=300
\(\frac{13}{7}-\frac{8}{6}+\frac{8}{7}-\frac{4}{6}-\frac{1}{3}\)
\(=\left(\frac{13}{7}+\frac{8}{7}\right)-\left(\frac{8}{6}+\frac{4}{6}\right)-\frac{1}{3}\)
\(=3-2-\frac{1}{3}\)
\(=1-\frac{1}{3}\)
\(=\frac{2}{3}\)
Ta có \(\frac{13}{7}-\frac{8}{6}+\frac{8}{7}-\frac{4}{6}-\frac{1}{3}\)
\(=\frac{13}{7}-\frac{8}{6}+\frac{8}{7}-\frac{4}{6}-\frac{2}{6}\)
\(=\left(\frac{13}{7}+\frac{8}{7}\right)-\left(\frac{8}{6}+\frac{4}{6}+\frac{2}{6}\right)\)
\(=3-2\)
\(=1\)
Bài 5:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\)
Do đó: a=30; b=40; c=50
Bài 6:
a:
Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)
\(\widehat{HAD}+\widehat{BDA}=90^0\)
mà \(\widehat{BAD}=\widehat{BDA}\)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là tia phân giác của \(\widehat{HAC}\)
b: Xét ΔAKD vuông tại K và ΔAHD vuông tại H có
AD chung
\(\widehat{KAD}=\widehat{HAD}\)
Do đó: ΔAKD=ΔAHD
Suy ra: AK=AH