K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chắc các bạn cũng biết phương pháp chứng minh bằng quy nạp toán học rồi. Phương pháp đó bao gồm:

Bước 1: Kiểm tra mệnh đề đúng với \(n=1\)

Bước 2: Giả sử mệnh đề đúng với \(n=k\ge1\) (giả thiết quy nạp)

Bước 3: Cần chứng minh mệnh đề đúng với \(n=k+1\)

Sau đây mình sẽ cho các bạn xem bài "chứng minh mọi người trên Trái Đất có cùng tuổi" và hãy tìm xem cách chứng minh này sai ở điểm nào:

Nếu Trái Đất có \(n\) người thì rõ ràng ta cần chứng minh tất cả \(n\) người đó có cùng tuổi.

Với \(n=1\) thì hiển nhiên tất cả người trên Trái Đất có cùng tuổi.

Giả sử tất cả \(n=k\) người trên Trái Đất có cùng tuổi.

Khi đó, xét nhóm \(n=k+1\) người, gọi là \(1,2,3,...,k,k+1\). Nếu bỏ người 1 đi thì số người còn lại sẽ là \(k\) người. Theo giả thiết quy nạp, số người này sẽ có cùng độ tuổi. 

Nếu bỏ người \(k+1\) thì số người còn lại cũng chính bằng \(k\). Theo giả thiết quy nạp, số người này cũng có cùng tuổi.

Ta thấy người 1 và người \(k+1\) có cùng tuổi với nhóm người \(2,3,4,...,k\) nên nhóm người gồm \(k+1\) người có cùng tuổi.

Như vậy điều phải chứng minh đúng khi \(n=k+1\). Như vậy, ta đã chứng minh được rằng:

"Mọi người trên Trái Đất đều có cùng tuổi."

1
25 tháng 7 2022

Nếu bỏ người thứ nhất đi thì số người còn lại là k người nhưng số người thực tế bằng tuổi nhau chỉ là k-1 vì với n = k thì có  k người bằng tuổi nhau , khi bỏ đi người thứ nhất thì chỉ còn lại k-1 người bằng tuổi nhau và một người nữa , lập luận còn lại k người bằng tuổi nhau là sai 

3 tháng 12 2018

Đáp án: A

Bước 1 sai  vì giả sử phản chứng sai, phải giả sử phương trình vô nghiệm và a, c trái dấu.

3 tháng 5 2019

Đáp án: B

Bước 2 sai vì  27k3 + 27k + 9k + 1 không chia hết cho 3

21 tháng 11 2017

Đáp án D

Dựa vào các bước chứng minh ta thấy lập luận đó là chính xác tất cả các bước.

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn...
Đọc tiếp

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng

Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng

Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng

Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)

0
Anh ta nhìn tôi và hỏi, “Xin lỗi vì mạo muội, nhưng cho tôi hỏi có phải năm nay cậu 28 tuổi không?”“Đúng vậy, nhưng sao anh biết?”, tôi ngạc nhiên hỏi lại. Nhưng anh ta không trả lời, mà tiếp tục vội vàng hỏi người bên cạnh.“Năm nay anh 45 tuổi phải không?”“Có phải bà 62 tuổi không?”“Sao cậu biết?”Cứ như vậy, người đàn ông nọ hỏi hết những hành khách có mặt trong toa tàu....
Đọc tiếp

Anh ta nhìn tôi và hỏi, “Xin lỗi vì mạo muội, nhưng cho tôi hỏi có phải năm nay cậu 28 tuổi không?”“Đúng vậy, nhưng sao anh biết?”, tôi ngạc nhiên hỏi lại. Nhưng anh ta không trả lời, mà tiếp tục vội vàng hỏi người bên cạnh.

“Năm nay anh 45 tuổi phải không?”

“Có phải bà 62 tuổi không?”

“Sao cậu biết?”

Cứ như vậy, người đàn ông nọ hỏi hết những hành khách có mặt trong toa tàu. Dường như anh ta sở hữu một năng lực đặc biệt, chỉ nhìn người vào người khác là có thể biết được tuổi của họ.

Từ đó đến khi tàu tới bến còn khoảng 15 phút, toàn bộ hành khách bao gồm cả tôi đều rất kinh ngạc trước khả năng khác thường của người đàn ông kia, ai nấy đều nhìn anh ta bằng ánh mắt vừa tò mò vừa có phần sợ hãi. Cho đến khi anh ta hỏi người cuối cùng có mặt trong toa tàu – một người phụ nữ.

“Năm nay chị 50 tuổi phải không?”

“Đúng vậy, nhưng chỉ còn 5 phút nữa là tôi bước sang tuổi 51 rồi.” Người phụ nữ kia trả lời.

Nghe xong anh ta mặt mày tái mét, toàn thân cứng đờ không nói được câu nào nữa. Tại sao vậy?

Ai làm được mk sẽ k cho! Mk đủ điểm nha!

0
CÁC BẠN GIẢI JUP MIK VỚI !! :))Bài 1: Xét tính đúng sai của các mệnh đề sau:a) Phương trình có hai nghiệm phân biệt.b) 2k là số chẵn. (k là số nguyên bất kì)c) 211 – 1 chia hết cho 11.Bài 2: Cho tứ giác ABDC: Xét hai mệnh đềP: Tứ giác ABCD là hình vuông.Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính đúng...
Đọc tiếp

CÁC BẠN GIẢI JUP MIK VỚI !! :))

Bài 1: Xét tính đúng sai của các mệnh đề sau:

a) Phương trình có hai nghiệm phân biệt.

b) 2k là số chẵn. (k là số nguyên bất kì)

c) 211 – 1 chia hết cho 11.

Bài 2: Cho tứ giác ABDC: Xét hai mệnh đề

P: Tứ giác ABCD là hình vuông.

Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.

Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính đúng sai của các mệnh đề đó.

Bài 3: Cho mệnh đề chứa biến P(n): n2 – 1 chia hết cho 4 với n là số nguyên. Xét tính đúng sai của mệnh đề khi n = 5 và n = 2.

Bài 4: Nêu mệnh đề phủ định của các mệnh đề sau:

Bài tập mệnh đề toán học lớp 10

Bài 5: Xét tính đúng sai và nêu mệnh đề phủ định của các mệnh đề:

a) Tứ giác ABCD là hình chữ nhật.

b) 16 là số chính phương.

Bài tập mệnh đề toán học lớp 10

Bài 6: Cho tứ giác ABCD và hai mệnh đề:

P: Tổng 2 góc đối của tứ giác bằng 1800;

Q: Tứ giác nội tiếp được đường tròn.

Hãy phát biểu mệnh đề kéo theo P => Q và xét tính đúng sai của mệnh đề này.

Bài 7: Cho hai mệnh đề

P: 2k là số chẵn.

Q: k là số nguyên

Hãy phát biểu mệnh đề kéo theo và xét tính đúng sai của mệnh đề.

Bài 8: Hoàn thành mệnh đề đúng:

Tam giác ABC vuông tại A nếu và chỉ nếu ...................

- Viết lại mệnh đề dưới dạng một mệnh đề tương đương.

Bài 9: Xét tính đúng sai của các mệnh đề và viết mệnh đề phủ định của các mệnh đề.

Bài tập mệnh đề toán học lớp 10

Bài 10: Xét tính đúng sai của các suy luận sau: (mệnh đề kéo theo)

Bài tập mệnh đề toán học lớp 10

Bài 11: Phát biểu điều kiện cần và đủ để một:

  • Tam giác là tam giác cân.
  • Tam giác là tam giác đều.
  • Tam giác là tam giác vuông cân.
  • Tam giác đồng dạng với tam giác khác cho trước.
  • Phương trình bậc 2 có hai nghiệm phân biệt.
  • Phương trình bậc 2 có nghiệm kép.
  • Số tự nhiên chia hết cho 2; cho 3; cho 5; cho 6; cho 9 và cho 11.

Bài 12: Chứng mình rằng: Với hai số dương a, b thì a + b ≥ 2√ab.

Bài 13: Xét tính đúng sai của mệnh đề:

Nếu một số tự nhiên chia hết cho 15 thì chia hết cho cả 3 và 5.

Bài 14: Phát biểu và chứng minh định lí sau:

a) n là số tự nhiên, n2 chia hết cho 3 thì n cũng chia hết cho 3.

b) n là số tự nhiên, n2 chia hết cho 6 thì n cũng chia hết cho cả 6; 3 và 2.

(Chứng minh bằng phản chứng)

1
3 tháng 3 2017

Đáp án: D

Các bước giải bài toán trên đều đúng.

25 tháng 11 2016

cậu này muốn nói: trong cái tam giác đó M chia AB thành k lần , N chia BC thành k lần ,và P chia CÃ thành k lần . nhưng k#1 có nghĩa là chia các phần từ 2 trở nên .nếu chia một phần thì chắc chắn các cạnh của tam giác vẫn giữ nguyên.

AH
Akai Haruma
Giáo viên
20 tháng 10 2021

Lời giải:
Giả sử $n$ có ước nguyên tố khác 2. Gọi ước đó là $p$ với $p$ lẻ.

Khi đó: $n=pt$ với $t$ nguyên dương bất kỳ.

$a^n+1=(a^t)^p+1\vdots a^t+1$

Mà $a^t+1\geq 3$ với mọi $a\geq 2; t\geq 1$ và $a^n+1> a^t+1$ nên $a^n+1$ là hợp số. Điều này vô lý theo giả thiết.

Vậy điều giả sử là sai, tức là $n$ không có ước nguyên tố lẻ nào cả. Vậy $n=2^k$ với $k\in\mathbb{N}$

Lấy $a=2; n=4$ ta có $a^n+1=17$ là snt. Vậy $n=2^k$ với $k$ nguyên dương.