Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) xét tam giác AED và tam giác MDE có:
^ADE = ^DEM ( do AD // EM )
ED chung
^EDM = ^AED ( do AE // DM )
=> Tam giác AED = tam giác MDE ( g.c.g )
=> AD = ME
b) Gọi O là giao điểm của ED và AM
Nối AM
Xét tam giác AEM và tam giác MDA có:
^EAM = ^AMD ( so le trong vì EA // DM )
AM chung
^EMA = ^DAM ( so le trong vì EM // AD )
=> Tam giác AEM = tam giác MDA ( g.c.g )
=> AE = DM ( hai cạnh tương ứng )
Xét tam giác AEO và tam giác MDO có:
^AED = ^EDM ( so le trong vì AE // DM )
AE = DM ( chúng minh trên )
^EAM = ^AMD ( so le trong vì AE // DM )
=> Tam giác AEO = tam giác MDO ( g.c.g )
=> EO = OD
=> O là trung điểm ED. (1)
Mà OA = OM ( do tam giác AOE = tam giác DOM )
=> O là trung điểm của AM. (2)
Từ (1), (2) => O là trung điểm của ED và AM và là giao điểm của OE và AM
Mà I là trung điểm ED ( giả thiết )
=> Điểm O và I trùng nhau.
=> I là trung điểm của ED và AM, là giao điểm của AM và ED
=> 3 điểm A, I, M thẳng hàng
a) Xét tam giác AED và tam giác MDE , có :
ED : chung
góc AED = góc MDE ( AB // DM )
góc ADE = góc MED ( EM // AC )
=> tam giác AED = tam giác MDE ( g-c-g )
=> AD = ME ( hai cạnh tương ứng )
Vậy AD = ME
b) Vì góc AIE + góc AID = 180 độ ( hai góc kề bù ) mà góc AID + góc DIM = 180 độ => ba điểm A , I , M thẳng hảng
Vây ba điểm A , I , M thẳng hảng
Theo đề đúng thì lm như sau:
a) Có: DE // BF (gt)
EF // BD (gt)
Suy ra BD = EF (theo tính chất đoạn chắn) (đpcm)
b) Vì EF // AB (gt) => ADE = DEF (so le trong) (1)
ED // BC (gt) => DEF = EFC (so le trong) (2)
Từ (1) và (2) => ADE = EFC
Xét t/g ADE và t/g EFC có:
EAD = CEF ( đồng vị)
AD = EF ( cùng = BD)
ADE = EFC (cmt)
Do đó, t/g ADE = t/g EFC (g.c.g) (đpcm)
c) Xét t/g MFE và t/g MDB có:
MF = MD (gt)
MFE = MDB (so le trong)
FE = DB (câu a)
Do đó, t/g MFE = t/g MDB (c.g.c)
=> EMF = BMD (2 góc tương ứng)
Mà EMF + EMD = 180o
Nên BMD + EMD = 180o
=> BME = 180o
hay B,M,E thẳng hàng (đpcm)
a: Xét tứ giác AEMD có
AD//ME
AE//MD
Do đó; AEMD là hình bình hành
Suy ra:AD=ME
b: Ta có: AEMD là hình bình hành
nên hai đường chéo AM và ED cắt nhau tại trung điểm của mỗi đường
=>A,M,I thẳng hàng