Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bước 1: Chọn 4 nam và 1 nữ về tỉnh thứ nhất, có cách.
Bước 2: Chọn 4 nam từ 8 nam còn lại, 1 nữ từ 2 nữ còn lại về tỉnh thứ hai, có cách.
Bước 3: Phân công 4 nam còn lại và 1 nữ còn lại về tỉnh thứ 3, có 1 cách.
Vậy theo quy tắc nhân, số cách phân công sẽ là: = 207900.
Chọn A.
Đầu tiên ta chọn 4 nam, 1 nữ cho tỉnh thứ nhất. Theo quy tắc nhân số cách chọn là
\(n_1\) = \(C_{12}^4\).\(C_3^1\) = 1485
Sau đó chọn 4 nam và 1 nữ cho tỉnh thứ hai, 4 nam sẽ được chọn trong 8 nam còn lại, 1 nữ sẽ chọn trong 2 nữ còn lại. Vậy theo quy tắc nhân số cách chọn là
\(n_2\) = \(C_8^4\).\(C_2^1\) = 140
Còn lại ta chọn cho tỉnh thứ ba
Lại theo quy tắc nhân, số cách phân công là
n=\(n_1\).\(n_2\) = 1485 x 140 = 207900.
Có C31 .C124 cách phân công thanh niên về tỉnh thứ nhất. Với mỗi cách này thì có C21 .C84 cách phân công số thanh niên còn lại về tỉnh thứ hai. Với mỗi cách phân công về hai tỉnh trên thì có C11 .C44 cách phân công về tỉnh thứ ba.
Do đó có C31 .C124 .C21 .C84 . C11 .C44 =207900 cách
Chọn C
Có C 12 4 cách phân công 4 nam về tỉnh thứ nhất
Với mỗi cách phân công trên thì có C 8 4 cách phân công 4 nam về tỉnh thứ hai và có C 4 4 cách phân công 4 nam còn lại về tỉnh thứ ba.
Khi phân công nam xong thì có 3! cách phân công ba nữ về ba tỉnh đó.
Vậy có tất cả C 12 4 . C 8 4 . C 4 4 . 3 ! = 4989600 cách phân công.
Chọn đáp án C.
Ta đếm số cách chọn 4 học sinh từ đội xung kích mà thuộc cả 3 lớp ở trên.
Phương án 1: Chọn 2 học sinh lớp A, 1 học sinh lớp B và 1 học sinh lớp C.
Số cách chọn trong trường hợp này là .
Phương án 2: Chọn 1 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C.
Số cách chọn trong trường hợp này là .
Phương án 3: Chọn 1 học sinh lớp A, 1 học sinh lớp B và 2 học sinh lớp C.
Số cách chọn trong trường hợp này là .
Theo quy tắc cộng thì số cách chọn 4 học sinh thuộc đủ cả ba lớp là 120 + 90 + 60 = 270.
Trong khi số cách chọn 4 học sinh bất kỳ từ đội xung kích là .
Vậy số cách chọn 4 học sinh mà các học sinh không thuộc quá hai lớp là 495 -270 =225.
Chọn C.
TH 1: 4 học sinh được chọn thuộc một lớp:
A: có cách chọn C 5 4 = 5
B: có cách chọn C 4 4 = 1
Trường hợp này có: 6 cách chọn.
TH 2: 4 học sinh được chọn thuộc hai lớp:
A và B: có C 9 4 - ( C 5 4 + C 4 4 ) = 120
B và C: có C 9 4 - C 4 4 = 125
C và A: có C 9 4 - C 5 4 = 121
Trường hợp này có 366 cách chọn.
Vậy có 366+6=372 cách chọn thỏa yêu cầu bài toán.
Chọn C.
Chọn 4 trong 15 bạn là tổ hợp chập 4 của 15 nên ta có:
\(C^4_{15}=1365\) cách chọn
1365