K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

câu 2 b

gọi tgian tổ 1 và tổ 2 làm xong công việc lần lượt là x và y (giờ, x;y>0)

Một giờ tổ 1 làm được: \(\frac{1}{x}\)(công việc)

Một giờ tổ 2 làm được: \(\frac{1}{y}\)(công việc)

Một giờ hai tổ làm được: \(\frac{1}{12}\)(công việc) nên ta có phương trình:

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\)(1)

Nếu tổ 1 làm trong 2 giờ, tổ hai làm trong 7 giờ thì hai tổ làm xog công việc nên ta có pt:

\(\frac{2}{x}+\frac{7}{y}=1\)(2)

Từ (1) và (2),  ta co hệ phương trình:

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{2}{x}+\frac{7}{y}=1\end{cases}}\)(tự giải ra nha)

............ vậy...........

~hoctot~

\(b,\) \(\sqrt{x^2-x-2}\) \(< x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x-2\ge0\\x-1>0\\x^2-x-2< x^2-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x-2\right)\left(x+1\right)\ge0\\x>1\\x< 3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le-1\\x>1\\x< 3\end{matrix}\right.\) \(\Rightarrow2\le x>3\)

9 tháng 5 2022

thank

11 tháng 5 2021

Bài 1 :

Ta có : a thuộc góc phần tư thứ II .

=> Cos a < 0

- Ta lại có : \(\left\{{}\begin{matrix}sina=\dfrac{1}{3}\\sin^2a+cos^2a=1\end{matrix}\right.\)

\(\Rightarrow cosa=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=-\dfrac{2\sqrt{2}}{3}\)

Bài 2 :

Ta có : \(F=\dfrac{\cos x.\tan x}{\sin^2x-\cot x.\cos x}=\dfrac{\cos x.\dfrac{\sin x}{\cos x}}{\sin^2x-\dfrac{\cos x}{\sin x}.\cos x}\)

\(=\dfrac{\sin x}{\sin^2x-\dfrac{\cos^2x}{\sin x}}=\dfrac{1}{\sin x-\cot^2x}\)

B=1-sin2a+cos2a

\(=\sin^2a+\cos^2a-\sin^2a+\cos^2a=2\cos^2a\)

C= 1-sina.cosa.tana

\(=1-\sin a.\cos a.\frac{\sin a}{\cos a}=1-\sin^2a=\cos^2a\)

biết có vậy thôi à

NV
18 tháng 4 2020

\(sina=\frac{3}{5}\Rightarrow sin^2a=\frac{9}{25}\) ; \(cos^2a=1-\frac{9}{25}=\frac{16}{25}\)

\(A=\frac{cota+tana}{cota-tana}=\frac{sina.cosa\left(cota+tana\right)}{sina.cosa\left(cota-tana\right)}=\frac{cos^2a+sin^2a}{cos^2a-sin^2a}=\frac{1}{cos^2a-sin^2a}=\frac{1}{\frac{16}{25}-\frac{9}{25}}=\frac{25}{7}\)

\(B=\frac{sin^2a-cos^2a}{sin^2a-3cos^2a}=\frac{\frac{sin^2a}{sin^2a}-\frac{cos^2a}{sin^2a}}{\frac{sin^2a}{sin^2a}-\frac{3cos^2a}{sin^2a}}=\frac{1-cot^2a}{1-3cot^2a}=\frac{1-\left(-\frac{1}{3}\right)^2}{1-3\left(-\frac{1}{3}\right)^2}=\)

\(C_1=sin^2a+cos^2a+cos^2a=1+cos^2a=1+\frac{1}{1+tan^2a}=1+\frac{1}{1+\left(-2\right)^2}\)

\(C_2=\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)=sin^2a-cos^2a=1-2cos^2a\)

\(=1-\frac{2}{1+tan^2a}=1-\frac{2}{1+\left(-2\right)^2}\)