Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm luôn nhé :
\(\sqrt{45-2.3\sqrt{5}+1}-\sqrt{20-2.3.2\sqrt{5}+9}\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5-\sqrt{45+2.2.\sqrt{2}.3\sqrt{5}+8}}\left(\sqrt{3}+\sqrt{5}\right).\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{7+2.\sqrt{7}.\sqrt{3}+3}\) Tới đây dễ rồi , bạn tự nhóm HĐT là ra ::v
Bài 1:
a) Ta có: \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(=\sqrt{45-2\cdot\sqrt{45}\cdot1+1}-\sqrt{9-2\cdot\sqrt{9}\cdot\sqrt{20}+20}\)
\(=\sqrt{\left(\sqrt{45}-1\right)^2}-\sqrt{\left(3-\sqrt{20}\right)^2}\)
\(=\left|\sqrt{45}-1\right|-\left|3-\sqrt{20}\right|\)
\(=\sqrt{45}-1-3+\sqrt{20}\)
\(=\sqrt{45}+\sqrt{20}-4\)
\(=\sqrt{5}\left(3+2\right)-4=5\sqrt{5}-4\)
b) Ta có: \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{8}+8}-\sqrt{45+2\cdot\sqrt{45}\cdot\sqrt{8}+8}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{8}\right)^2}-\sqrt{\left(\sqrt{45}+\sqrt{8}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{8}\right|-\left|\sqrt{45}+\sqrt{8}\right|\)
\(=\sqrt{8}-\sqrt{5}-\sqrt{45}-\sqrt{8}\)
\(=-\sqrt{5}-\sqrt{45}=-\sqrt{5}\left(1+\sqrt{9}\right)=-4\sqrt{5}\)
c) Ta có: \(\left(3-\sqrt{2}\right)\cdot\sqrt{7+4\sqrt{3}}\)
\(=\left(3-\sqrt{2}\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot2+4}\)
\(=\left(3-\sqrt{2}\right)\cdot\sqrt{\left(\sqrt{3}+2\right)^2}\)
\(=\left(3-\sqrt{2}\right)\left(\sqrt{3}+2\right)\)
\(=3\sqrt{3}+6-\sqrt{6}-2\sqrt{2}\)
d) Ta có: \(\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10+2\sqrt{21}}\)
\(=\left(\sqrt{7}-\sqrt{3}\right)\cdot\sqrt{7+2\cdot\sqrt{7}\cdot\sqrt{3}+3}\)
\(=\left(\sqrt{7}-\sqrt{3}\right)\cdot\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\)
\(=\left(\sqrt{7}-\sqrt{3}\right)\cdot\left(\sqrt{7}+\sqrt{3}\right)\)
\(=\left(\sqrt{7}\right)^2-\left(\sqrt{3}\right)^2=7-3=4\)
1: \(=\sqrt{36}=6\)
2: \(=\sqrt{\left(15-9\right)\left(15+9\right)}=\sqrt{24\cdot6}=12\)
3: \(=3\sqrt{5}-1-3\sqrt{5}-1=-2\)
4: \(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
5: \(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)=5-4=1\)
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
\(13-2\sqrt{42}=7-2\sqrt{42}+6\\ =\left(\sqrt{7}\right)^2-2\cdot\sqrt{7}\cdot\sqrt{6}+\left(\sqrt{6}\right)^2=\left(\sqrt{7}-\sqrt{6}\right)^2\)
\(46+6\sqrt{5}=\left(5+2\cdot\sqrt{5}\cdot3+9\right)+32=\left(\sqrt{5}+3\right)^2+32\)(ko rút đc)
\(\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\\ =\sqrt{3-\sqrt{5}}\cdot\sqrt{2}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\sqrt{6-2\sqrt{5}}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\sqrt{5-2\sqrt{5}+1}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\left(3+\sqrt{5}\right)\\ =4\left(3+\sqrt{5}\right)\)
\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{2}\sqrt{3-\left(\sqrt{3}+1\right)}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
Dễ dàng nhận ra
\(\sqrt{\sqrt{7}-\sqrt{3}}< \sqrt{\sqrt{7}+\sqrt{3}}\Rightarrow\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}< 0\)
Đặt \(x=\frac{\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}}{\sqrt{\sqrt{7}-2}}< 0\)
\(\Rightarrow x^2=\frac{\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}-2\sqrt{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}}{\sqrt{7}-2}\)
\(\Rightarrow x^2=\frac{2\sqrt{7}-2\sqrt{4}}{\sqrt{7}-2}=\frac{2\sqrt{7}-4}{\sqrt{7}-2}=\frac{2\left(\sqrt{7}-2\right)}{\sqrt{7}-2}=2\)
\(\Rightarrow x=-\sqrt{2}\) (do \(x< 0\))
à
chữ "à" ?