Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔBAC vuông tại A có
\(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}=36^052'\)
=>\(\widehat{B}=53^08'\)
Ta có \(\sin B=\sin48^0=\dfrac{AC}{BC}\approx0,74\Leftrightarrow BC\approx\dfrac{12}{0,74}\approx16,22\left(cm\right)\)
Áp dụng PTG: \(AB=\sqrt{BC^2-AC^2}\approx10,91\left(cm\right)\)
\(\widehat{C}=90^0-\widehat{B}=42^0\)
a) Trong tam giác vuông BCH, ta có:
CH=BC.sinB^=12.sin60≈10,392 (cm)
Trong tam giác vuông ABC, ta có:
\(A\)=180−(60+40)=80
Trong tam giác vuông ACH, ta có:
\(AC=\dfrac{CH}{sinA}=\dfrac{10,932}{sin80}=10,552\left(cm\right)\)
b) Kẻ AK⊥BCAK⊥BC
Trong tam giác vuông ACK, ta có:
AK=AC.sinC≈10,552.sin40=6,783 (cm)
Vậy SABC=12.AK.BC≈12.6,783.12=40,696 (cm2)
AC=căn 7^2-5^2=2căn6(cm)
sin C=5/7
=>góc C=45 độ 35'
=>góc B=44 độ 25'