Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
oh no bài thứ nhất là dạng chứng minh cs đúng ko ,
ko thể nào là dạng tìm a,b,c đc-.-
b: Ta có: \(x^2-x+5\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{19}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\forall x\)
\(\Leftrightarrow\dfrac{2022}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}}\le\dfrac{8088}{19}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Lời giải:
$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{9^2-27}{2}=27$
$\Rightarrow a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2(a^2+b^2+c^2)=2(ab+bc+ac)$
$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì $(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$
Mà $a+b+c=9$ nên $a=b=c=3$.
Khi đó:
$(a-4)^{2021}+(b-4)^{2022}+(c-4)^{2023}=(-1)^{2021}+(-1)^{2022}+(-1)^{2023}$
$=(-1)+1+(-1)=-1$
a) \(A=1-8x-x^2=-\left(x^2+8x+16\right)+17=-\left(x-4\right)^2+17\le17\)
\(ĐTXR\Leftrightarrow x=4\)
b) \(B=5-2x+x^2=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
\(ĐTXR\Leftrightarrow x=1\)
c) \(C=x^2+4y^2-6x+8y-2021=\left(x^2-6y+9\right)+\left(4y^2+8y+4\right)-2034=\left(x-3\right)^2+\left(2y+2\right)^2-2034\ge-2034\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
a: Ta có: \(A=-x^2-8x+1\)
\(=-\left(x^2+8x-1\right)\)
\(=-\left(x^2+8x+16-17\right)\)
\(=-\left(x+4\right)^2+17\le17\forall x\)
Dấu '=' xảy ra khi x=-4
b: Ta có: \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
A
chx chắc là A đâu, bạn cho mik bt dấu "=" xảy ra khi nào