K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

\(A=5^{61}+25^{31}+125^{21}\)

\(\Rightarrow A=5^{61}+\left(5^2\right)^{31}+\left(5^3\right)^{21}\)

\(\Rightarrow A=5^{61}+5^{62}+5^{63}\)

\(\Rightarrow A=5^{61}\left(1+5+5^2\right)\)

\(\Rightarrow A=5^{61}.31⋮31\)

\(\Rightarrow A⋮31\)

Vậy \(A⋮31\)

21 tháng 12 2016

\(A=5^{61}+25^{31}+125^{21}\)

\(A=5^{61}+\left(5^2\right)^{31}+\left(5^3\right)^{21}\)

\(A=5^{61}+5^{62}+5^{63}\)

\(A=5^{61}\left(1+5+5^2\right)\)

\(A=5^{61}\cdot31⋮31\left(đpcm\right)\)

19 tháng 9 2016

a) Đặt \(A=5^{300}+5^{299}+...+5\)

\(\Rightarrow A=\left(5^{300}+5^{299}+5^{298}\right)+...+\left(5^3+5^2+5\right)\)

\(\Rightarrow A=5^{298}.\left(5^2+5+1\right)+...+5\left(5^2+5+1\right)\)

\(\Rightarrow A=5^{298}.31+...+5.31\)

\(\Rightarrow A=\left(5^{298}+...+5\right).31⋮31\)

\(\Rightarrow A⋮31\left(đpcm\right)\)

19 tháng 9 2016

bn làm cho mik câu b nx đi nha

29 tháng 12 2018

\(5^{2008}+5^{2007}+5^{2006}\)

\(=5^{2006}\cdot\left(5^2+5+1\right)\)

\(=5^{2006}\cdot31⋮31\left(đpcm\right)\)

26 tháng 9 2015

52008 + 52007 + 52006 = 52006.(1+5+52

                                    = 52006.31 chia hết cho 31

=> 52008 + 52007 + 52006 chia hết cho 31 (đpcm)

11 tháng 1 2018

Đặt A=6(x+7y)−(6x+11y)

=6x+42y−6x−11y

=3y

Do 31y⋮31

6x+11y⋮31⇒6(x+7y)⋮31

Vì 6(x+7y)⋮31⇒x+7y⋮31

Vậy nếu 6x+11y⋮31⇒x+7y⋮31(Đpcm)

11 tháng 1 2018

đặt A=6(x+7y)-(6x+11y)

=6x +42y-6x-11y

=31y

do 31y chia hết cho 31

6x+11y chia hết cho 31=>6(x+7y) chia hết cho 31

do (6,31)=1=>x+7y chia hết cho 31

vậy nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31

18 tháng 1 2018

Xét n=0 => 62n+1 + 5n+2  = 31chia hết 31

Xét n=1 => 62n+1 + 5n+2  = 341 chia hết 31

Giả sử mệnh đề đúng với n = k,tức là có 62k+1 + 5k + 2,ta sẽ chứng minh mệnh đề đúng với n = k+1 tức là chứng minh 62k+3  + 5k+3

Ta có 62k+1 + 5k+2  = 36k .6+5k .25 chia hết 31

<=> 62k+3  + 5k+3 = 36k .216+5k .125

Xét hiệu : 62k+3  + 5k+3 − 62k+1  − 5k+2  = 36k .216+5k .125−36k .6−5k .25

= 36k .210+5k .100 = 36k .207+5k .93−7(36k−5k ) Có 217 chia hết 31, 93 chia hết 31và 36k−5k  chia hết 36 - 5 = 31

=> 62n+3  + 5k+3  − 62k+1 − 5k+2  chia hết 31

. Mà 62k+1  + 5k+2  chia hết 31 nên 62k+3 + 5k+3  chia hết 31

Phép quy nạp được chứng minh hoàn toàn,ta có đpcm 

:D

18 tháng 1 2018

Ta có: \(6^2\equiv5\left(mod31\right)\)

\(\Rightarrow6^{2n}\equiv5^n\left(mod31\right)\)

\(6^{2n+1}\equiv6.5^n\left(mod31\right)\)

Lại có: 5\(5\equiv5\left(mod31\right)\)

\(\Rightarrow5^n\equiv5^n\left(mod31\right)\)

\(\Rightarrow5^{n+2}\equiv25.5^n\left(mod31\right)\)

\(\Rightarrow6^{2n+1}+5^{n+2}\equiv31.5^n\left(mod31\right)\)

\(\Rightarrow6^{2n+1}+5^{n+2}⋮31\)

8 tháng 7 2017

Vì a=11111.....1111 có 31 chữ số.Mà cứ 3 chữ số 1 thì chia hết cho 3.

\(\Rightarrow\)11111...1111 chia 3 dư 1

Vì b=111....111 có 38 chữ số.Mà cứ 3 chữ số 1 thì chia hết cho 3

\(\Rightarrow\)b chia 3 dư 2

\(\Rightarrow\)a.b chia 3 dư 2

\(\Rightarrow\)a.b - 2 \(⋮3\)

8 tháng 7 2017

Ta có: a= 1111111..11111 (31 chữ số 1)

          a= (1 + 1 + 1 +...+ 1 + 1) ( 31 chữ số 1)

          a=31

          b= 1 + 1 + 1 +...+ 1 + 1(38 chữ số 1)

          b= 38

=> a.b - 2 = 31 . 38 - 2 = 1176

Mà 1176 chia hết cho 3

=> a.b - 2 chia hết cho 3 (đpcm)

11 tháng 7 2018

a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4

Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4

= (a+a+a+a+a) + (1+2+3+4)

= 5a + 10

= 5(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên chia hết cho 5

21 tháng 6 2015

Số có 31 chữ số 1 có tổng các chữ số là 31 chia 3 dư 1=>a chia 3 dư 1

Số có 38 chữ số 1 có tổng các chữ số là 38 chia 3 dư 2=>b chia 3 dư 2

=>ab chia 3 dư 2(bạn có thể chứng minh điều này nếu chư chắc chắn)

=>ab-2 chia hết cho 3(ĐPCM)

 

1 tháng 8 2017

Do a gồm 31 chữ số 1 nên tổng các chữ số của a là 31 . 1 = 31 chia 3 dư 1
Do b gồm 38 chữ số 1 nên tổng các chữ số của b là 38 . 1 = 38 chia 3 dư 2
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => a chia 3 dư 1, b chia 3 dư 2
=> ab chia 3 dư 2
Mà 2 chia 3 dư 2
=> ab -2 chia hết cho 3
Vậy: ab - 2 chia hết cho 3 (đcpcm)