K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y=2xy\cdot x=x\)( vì \(xy=1\))

\(\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{x}=1\)

Hoan toàn tương tự : \(\frac{y}{x^2+y^4}\le\frac{y}{y}=1\)

Khi đó :

\(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le1+1=2\)

Hay \(A\le2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^4=y^2\\x^2=y^4\\xy=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}}\)

8 tháng 4 2019

Thêm đk x,y>0

*Tìm giá trị lớn nhất:

\(A=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le\frac{x}{2xy.x}+\frac{y}{2xy.y}=\frac{x}{2x}+\frac{y}{2y}=\frac{1}{2}+\frac{1}{2}=1\)

Dấu "=' xảy ra khi x = y = 1

P/s: Bài này hình như không có Min thì phải.:>

13 tháng 11 2021

xy = 5

13 tháng 11 2021

Why? 

Đặt \(P=\dfrac{xy}{xy+1}\Rightarrow\dfrac{1}{P}=\dfrac{xy+1}{xy}=1+\dfrac{1}{xy}\)

Ta có : \(xy\le\dfrac{x^2+y^2}{2}=\dfrac{8}{2}=4\Rightarrow\dfrac{1}{xy}\ge4\)

\(\Rightarrow\dfrac{1}{P}\ge5\Rightarrow P\le\dfrac{1}{5}\)

Dấu "=" xảy ra khi $x=y=2$

3 tháng 10 2016

x+y=3=>x=3-y

M=x+xy+y=x+y+xy=3-y+y+(3-y).y

=3+3y-y2=-y2+3y+3=-(y2-3y-3)=\(-\left(y^2-2.y.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}-3\right)=-\left[\left(y-\frac{3}{2}\right)^2-\frac{21}{4}\right]=\frac{21}{4}-\left(y-\frac{3}{2}\right)^2\le\frac{21}{4}\) (với mọi y)

Dấu "=" xảy ra <=> y=3/2 <=> x=3/2

Vậy M đạt GTLN là 21/4 khi x=y=3/2