Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y=2xy\cdot x=x\)( vì \(xy=1\))
\(\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{x}=1\)
Hoan toàn tương tự : \(\frac{y}{x^2+y^4}\le\frac{y}{y}=1\)
Khi đó :
\(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le1+1=2\)
Hay \(A\le2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^4=y^2\\x^2=y^4\\xy=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}}\)
Đặt \(P=\dfrac{xy}{xy+1}\Rightarrow\dfrac{1}{P}=\dfrac{xy+1}{xy}=1+\dfrac{1}{xy}\)
Ta có : \(xy\le\dfrac{x^2+y^2}{2}=\dfrac{8}{2}=4\Rightarrow\dfrac{1}{xy}\ge4\)
\(\Rightarrow\dfrac{1}{P}\ge5\Rightarrow P\le\dfrac{1}{5}\)
Dấu "=" xảy ra khi $x=y=2$
x+y=3=>x=3-y
M=x+xy+y=x+y+xy=3-y+y+(3-y).y
=3+3y-y2=-y2+3y+3=-(y2-3y-3)=\(-\left(y^2-2.y.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}-3\right)=-\left[\left(y-\frac{3}{2}\right)^2-\frac{21}{4}\right]=\frac{21}{4}-\left(y-\frac{3}{2}\right)^2\le\frac{21}{4}\) (với mọi y)
Dấu "=" xảy ra <=> y=3/2 <=> x=3/2
Vậy M đạt GTLN là 21/4 khi x=y=3/2