Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu: \(A_6^3=120\)
Gọi số cần lập có dạng \(\overline{abc}\)
Số chia hết cho 5 \(\Rightarrow c=5\) (1 cách chọn)
Chọn và hoán vị cặp ab: \(A_5^2=20\) cách
\(\Rightarrow1.20=20\) số chia hết cho 5
Xác suất: \(P=\dfrac{20}{120}=\dfrac{1}{6}\)
Gọi \(\overline{abc}\) là số tự nhiên có 3 chữ số khác nhau.
Chọn a có 5 cách \(\left(a\ne0\right)\)
Chọn b có 5 cách \(\left(b\ne a\right)\)
Chọn c có 4 cách \(\left(c\ne a,c\ne b\right)\)
Theo quy tắc nhân, có \(5.5.4=100\) cách chọn số tự nhiên có 3 chữ số khác nhau.
\(\Rightarrow n\left(\Omega\right)=100\)
Gọi \(A:``\) Lấy 2 số ngẫu nhiên có tích là số chẵn \(''\)
Để lấy 2 số ngẫu nhiên có tích là số chẵn thì ít nhất 1 trong 2 số phải là số chẵn.
\(TH_1:\) Cả 2 số lấy ra đều là số chẵn có \(C^2_3=6\) cách.
\(TH_2:\) 2 số lấy ra có 1 số là chẵn và 1 số là lẻ có \(C^1_3.C^1_3=9\) cách.
Theo quy tắc cộng, có \(6.9=54\) cách lấy 2 số ngẫu nhiên có tích là số chẵn.
\(\Rightarrow n\left(A\right)=54\)
\(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{54}{100}=\dfrac{27}{50}\)
Tổng S của 5 chữ số lập từ tập trên luôn thỏa mãn
\(0+1+2+3+4\le S\le9+8+7+6+5\)
\(\Rightarrow10\le S\le35\)
Mà S chia hết cho 9 \(\Rightarrow S=\left\{18;27\right\}\) (lưu ý rằng 2 số này cộng lại đúng bằng 45, do đó giả sử nếu ta chọn được S=18 như 1;2;3;4;8 chia hết cho 5 thì phần còn lại chính là S=27 tương ứng)
Gọi tập S=18 là A, tập S=27 là B, ta chọn tập A:
TH1: A chứa 0 mà ko chứa 9, chọn 4 chữ số còn lại tổng 18:
- Các cặp 18; 27; 36; 45 tổng bằng 9 nên chọn 2 trong 4 cặp này có \(C_4^2=6\) cách
Hoán vị 5 chữ số tập A có \(5!-4!\) cách \(\Rightarrow6.\left(5!-4!\right)=576\) số tập A
Hoán vị 5 chữ số tập B tương ứng có \(5!\) cách \(\Rightarrow6.5!=720\) số tập B
- Các bộ 1467; 2358 tổng bằng 18, có 2 cách chọn 1 bộ
Hoán vị 5 chữ số tập A \(\Rightarrow2.\left(5!-4!\right)=192\) số
Hoán vị 5 chữ số tập B tương ứng: \(2.5!=240\) số
TH2: A chứa 9 mà ko chứa 0:
\(\Rightarrow\) Chọn 4 chữ số còn lại có tổng bằng 9, dễ dàng thấy ko có bộ nào thỏa mãn do 1+2+3+4>9
TH3: A chứa cả 0 lẫn 9:
\(\Rightarrow\) Tổng 3 chữ số còn lại bằng 9, ta có các bộ 126; 135; 234; có 3 bộ
Hoán vị 5 chữ số của A: \(3\left(5!-4!\right)=288\) số
Hoán vị 5 chữ số tập B: \(3.5!=360\) số
TH4: A ko chứa cả 0 lẫn 9:
Có các bộ 12348; 12357; 12456 tổng 3 bộ
Hoán vị tập A: có \(3.5!=360\) số
Hoán vị tập B : \(3.\left(5!-4!\right)=288\) số
\(\Rightarrow\text{576+720+192+240+288+360+360+288=3024}\) số
Tổng tập hợp \(S\) là:
\(S=\left\{5+6+7+8+9\right\}\\ S=35\)
Để cho dễ tính toán, ta coi như việc chọn 2 số là theo thứ tự
Không gian mẫu: \(A_{90}^2\)
Chọn số thứ nhất: \(C_{90}^1=90\) cách
Hàng đơn vị số thứ 2 có 1 cách chọn (giống hàng đơn vị số thứ nhất), hàng chục số thứ 2 có 8 cách chọn (khác hàng chục số thứ hai và 0)
\(\Rightarrow90.1.8\) cách chọn 2 số thỏa mãn yêu cầu
Xác suất: \(P=\dfrac{90.1.8}{A_{90}^2}\)
Gọi số cần tìm là \(\overline{abcdef}\)
TH1: 0,1,2 là 3 số cuối
=>\(\overline{abc012};\overline{abc210}\)
a có 6 cách
b có 5 cách
c có 4 cách
=>CÓ 6*5*4*2=240 cách
TH2: \(\overline{ab\left\{0,1,2\right\}f}\)
0,1,2 có 3!=6 cách
a có 5 cách
b có 4 cách
f có 3 cách
=>Có 360 cách
TH3: \(\overline{a\left\{0,1,2\right\}ef}\)
0,1,2 có 3!=6 cách
f có 2 cách
e có 5 cách
a có 4 cách
=>Có 6*3*5*4=360 cách
TH4: \(\overline{\left\{0,1,2\right\}def}\)
{0;1;2} có 4 cách
f có 3 cách
d có 5 cách
e có 4 cách
=>Có 4*3*5*4=240 cách
=>Có 120+120+360+360+240=1200 cách
TH1 (012)def : chọn a từ (1,2) có 2 cách
chọn b từ (012)/(a) có 2 cách
chọn c từ (012)/(ab) có 1 cách
chọn f chẵn từ (4,6) có 2 cách
với d và e chọn 2 số từ 4 số còn lại và xếp nên có 4A2 cách
vậy có 2.2.1.4A2.2 số
TH2 a(012)ef
xếp chỗ cho 3 số (012) có 3! cách
chọn f từ (4,6) có 2 cách
chọn ae từ 4 số còn lại và xếp có 4A2 cách
vậy có 3!.2.4A2 số
TH3 ab(012)f
tương tự TH2
TH4 : abc(012):
chọn f chẵn từ (0,2) có 2 cách
chọn e từ (012)/(a) có 2 cách
chọn d từ (012)/(ab) có 1 cách
với abc chọn 3 số từ 5 số còn lại và xếp nên có 5A3 cách
vậy có 2.2.1.5A3 số
tổng 4 TH ta có
2.2.1.4A2.2+3!.2.4A2+3!.2.4A2+2.2.1.5A3=624 số