K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 9 2020

a/ \(y=2cos\left(\frac{\pi}{14}\right)cos\left(x-\frac{\pi}{14}\right)\)

Do \(-1\le cos\left(x-\frac{\pi}{14}\right)\le1\) với mọi x

\(\Rightarrow-2cos\left(\frac{\pi}{14}\right)\le y\le2cos\left(\frac{\pi}{14}\right)\)

\(y_{min}=-2cos\left(\frac{\pi}{14}\right)\) khi \(cos\left(x-\frac{\pi}{14}\right)=-1\)

\(y_{max}=2cos\left(\frac{\pi}{14}\right)\) khi \(cos\left(x-\frac{\pi}{14}\right)=1\)

b/ \(y=\sqrt{3}cos2x-\frac{1}{2}sin2x=\frac{\sqrt{13}}{2}\left(\frac{2\sqrt{39}}{13}cos2x-\frac{\sqrt{13}}{13}sin2x\right)\)

\(\Rightarrow y=\frac{\sqrt{13}}{2}cos\left(2x+a\right)\) với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{2\sqrt{39}}{13}\)

Do \(-1\le cos\left(2x+a\right)\le1\Rightarrow-\frac{\sqrt{13}}{2}\le y\le\frac{\sqrt{13}}{2}\)

c/ \(y=4sin^2x+4sinx+1+4cos^2x-4\sqrt{3}cosx+3\)

\(=8+4sinx-4\sqrt{3}cosx=8+8\left(\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx\right)\)

\(=8+8sin\left(x-\frac{\pi}{3}\right)\)

Do \(-1\le sin\left(x-\frac{\pi}{3}\right)\le1\Rightarrow0\le y\le16\)

NV
11 tháng 9 2021

1. Không dịch được đề

2.

\(-1\le cos2x\le1\Rightarrow1\le y\le3\)

3.

a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)

\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)

\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

b.

\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)

\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)

\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

4.

\(y=\left(tanx-1\right)^2+2\ge2\)

\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)

1 tháng 1 2018

Chọn A

↔ (2-y)sinx + (1+2y)cosx= 3y-1(*)

Sử dụng điều kiện để phương trình (*) có nghiệm suy ra -1/2 ≤ y ≤ 2

NV
14 tháng 9 2020

a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)

\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)

Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)

b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)

\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)

\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)

c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)

\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)

\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác