K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 2 2020

\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+2}-\sqrt{3x-1}}{x-1}=+\infty\) (đây ko phải giới hạn dạng vô định \(\frac{0}{0}\))

\(\Rightarrow\) Không tồn tại m thỏa mãn

Có lẽ bạn ghi ko đúng đề, hàm bên trên phải là \(\frac{\sqrt{2x+2}-\sqrt{3x+1}}{x-1}\) thì giới hạn này mới là 1 số hữu hạn

22 tháng 2 2020

ừ đúng rồi là 3x+1 giúp mình câu này với

18 tháng 3 2022

\(\dfrac{\sqrt{2x+7}-\sqrt{x+3}-5}{x-1}\) hay \(\dfrac{\sqrt{2x+7}+\sqrt{x+3}-5}{x-1}\)

a. Có bao nhiêu giá trị của a để \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)=a^2\)b. Tìm a để hàm số f(x)=\(\left\{{}\begin{matrix}\dfrac{x^3+1}{x+1}khix\ne-1\\3akhix=-1\end{matrix}\right.\)gián đoạn tại điểm \(x_0=-1\)c. Cho tứ diện đều ABCD .Góc giữa 2 vecto DA và BD bằng?d. Cho hàm số y = f(x) = \(\dfrac{x^2-1}{2-2x}\)khi \(x\ne1\) .Để hàm số liên tục tại x=1 thì f(1) phải nhận giá trị nào dưới đây? (giải tự...
Đọc tiếp

a. Có bao nhiêu giá trị của a để \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)=a^2\)

b. Tìm a để hàm số f(x)=\(\left\{{}\begin{matrix}\dfrac{x^3+1}{x+1}khix\ne-1\\3akhix=-1\end{matrix}\right.\)gián đoạn tại điểm \(x_0=-1\)

c. Cho tứ diện đều ABCD .Góc giữa 2 vecto DA và BD bằng?

d. Cho hàm số y = f(x) = \(\dfrac{x^2-1}{2-2x}\)khi \(x\ne1\) .Để hàm số liên tục tại x=1 thì f(1) phải nhận giá trị nào dưới đây? (giải tự luận giúp em ạ)

A.-1            B.1           C.2                           D.0

e. Cho hàm số \(f\left(x\right)=x^3+2x-1\) .Xét phương trình f(x) = 0 (1), trong các mệnh đề sau tìm mệnh đề sai? giải tự luận giúp em ạ

A. (1) có nghiệm rên khoảng (-1;1)

B. (1) Không có nghiệm trên khoảng (-5;3)

C. (1) có nghiệm trên R 

D. (1) có nghiệm trên khoảng (0;1)

 

 

3
NV
14 tháng 3 2022

a.

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(\sqrt{x^2-ax+2021}-x\right)\left(\sqrt{x^2-ax+2021}+x\right)}{\sqrt{x^2-ax+2021}+x}+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-ax+2021}{\sqrt{x^2-ax+2021}+x}+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x\left(-a+\dfrac{2021}{x}\right)}{x\left(\sqrt{1-\dfrac{a}{x}+\dfrac{2021}{x^2}}+1\right)}+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-a+\dfrac{2021}{x}}{\sqrt{1-\dfrac{a}{x}+\dfrac{2021}{x^2}}+1}+1\right)\)

\(=\dfrac{-a+0}{\sqrt{1+0+0}+1}+1=-\dfrac{a}{2}+1\)

\(\Rightarrow a^2=-\dfrac{a}{2}+1\Rightarrow2a^2+a-2=0\)

Pt trên có 2 nghiệm pb nên có 2 giá trị a thỏa mãn

NV
14 tháng 3 2022

b.

\(\lim\limits_{x\rightarrow-1}f\left(x\right)=\lim\limits_{x\rightarrow-1}\dfrac{x^3+1}{x+1}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x+1}=\lim\limits_{x\rightarrow-1}\left(x^2-x+1\right)\)

\(=1+1+1=3\)

\(f\left(-1\right)=3a\)

Hàm gián đoạn tại điểm \(x_0=-1\) khi:

\(\lim\limits_{x\rightarrow-1}f\left(x\right)\ne f\left(-1\right)\Rightarrow3\ne3a\)

\(\Rightarrow a\ne1\)

NV
28 tháng 2 2021

\(\lim\limits_{x\rightarrow4^+}f\left(x\right)=\lim\limits_{x\rightarrow4^+}\sqrt{x^2-4x}=0\)

\(\lim\limits_{x\rightarrow4^-}f\left(x\right)=\lim\limits_{x\rightarrow4^-}\left(x+a\right)=a+4\)

Hàm tồn tại giới hạn tại x=4 khi \(a+4=0\Leftrightarrow a=-4\)

AH
Akai Haruma
Giáo viên
19 tháng 6 2021

Lời giải:

Để hàm liên tục tại $x=0$ thì:

\(\lim\limits_{x\to 0+}f(x)=\lim\limits_{x\to 0-}f(x)=f(0)\)

\(\Leftrightarrow \lim\limits_{x\to 0+}\frac{\sqrt{x+1}-1}{2x}=\lim\limits_{x\to 0-}(2x^2+3mx+1)=1\)

\(\Leftrightarrow \lim\limits_{x\to 0+}\frac{1}{2(\sqrt{x+1}+1)}=0\Leftrightarrow \frac{1}{2}=0\) (vô lý)

Vậy không tồn tại $m$ thỏa mãn.

 

 

 

AH
Akai Haruma
Giáo viên
27 tháng 2 2022

Lời giải:
Để hàm số trên liên tục tại $x_0=0$ thì:
\(\lim\limits_{x\to 0+}f(x)=\lim\limits_{x\to 0-}f(x)=f(0)\)

\(\Leftrightarrow \lim\limits_{x\to 0+}(a+\frac{4-x}{x+2})=\lim\limits_{x\to 0-}(\frac{\sqrt{1-x}+\sqrt{1+x}}{x})=a+2\)

\(\Leftrightarrow a+2=\lim\limits_{x\to 0-}\frac{\sqrt{1-x}+\sqrt{1+x}}{x}\)

Mà \(\lim\limits_{x\to 0-}\frac{\sqrt{1-x}+\sqrt{1+x}}{x}=-\infty \) nên không tồn tại $a$ để hàm số liên tục tại $x_0=0$

NV
26 tháng 2 2021

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\dfrac{3\left(x-1\right)}{\left(1-x\right)\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4\right)}\)

\(=\lim\limits_{x\rightarrow1^-}\dfrac{-3}{\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4\right)}=-\dfrac{1}{12}\)

\(f\left(1\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{2m\sqrt{x}+3}{5}=\dfrac{2m+3}{5}\)

Hàm liên tục trên R khi và chỉ khi:

\(f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\Leftrightarrow\dfrac{2m+3}{5}=-\dfrac{1}{12}\Leftrightarrow m=-\dfrac{41}{24}\)

27 tháng 2 2021

cảm ơn thầy

 

NV
16 tháng 4 2022

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{ax+1}-\sqrt[]{1-bx}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{ax}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{bx}{1+\sqrt[]{1-bx}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{a}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{b}{1+\sqrt[]{1-bx}}\right)=\dfrac{a}{3}+\dfrac{b}{2}\)

Hàm liên tục tại \(x=0\) khi:

\(\dfrac{a}{3}+\dfrac{b}{2}=3a-5b-1\Leftrightarrow8a-11b=3\)