K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2019

cho mkik hoi cai cau doan tau ban biet lam ko

15 tháng 3 2019

MK chỉ chững minh đc câu b thui!

b) Gọi (2n+1,6n+7)=d

ta có: 2n+1 \(⋮\)d     => 3(2n+1)\(⋮\) d  =>  6n+3 \(⋮\)d                      (1)

         6n+7 \(⋮\)d                                                                             (2)

Từ (1) và(2),suy ra 6n+7-(6n+3) \(⋮\)d hay 6n+7-6n-3\(⋮\)d=> 4 \(⋮\)d

Ư(4)={1,2,4,-1,-2,-4}

Ta có 2n+1 ko chia hết cho 2,4,-2,-4

Suy ra....

20 tháng 7 2016

\(\frac{2n+3}{2n+5}=\frac{2n+2+1}{2n+2+3}=\frac{2\left(n+1\right)+1}{2\left(n+1\right)+3}\)Ta thấy phân số trên có tử và mẫu là 2 số lẽ liên tiếp nên là phân số tối giản.

25 tháng 4 2020

Để phân số n+1/2n+3 là phân số tối giản thì (n+1; 2n+3) =1

Gọi (n+1; 2n+3) =d => n+1 \(⋮\)d; 2n+3 \(⋮\)d

=> (2n+3) - (n+1) \(⋮\)d

=> (2n+3) -2(n+1) \(⋮\)d

=> 2n+3 -2n -2 \(⋮\)d

=> 1 \(⋮\)d

=> n+1/2n+3 là phân số tối giản

Vậy...

25 tháng 4 2020

Gọi d là ƯC(n+1 ; 2n + 3)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

=> ( 2n + 3 ) - ( 2n + 2 ) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(n +1 ; 2n + 3) = 1

=> \(\frac{n+1}{2n+3}\)tối giản ( đpcm )

30 tháng 7 2015

Gọi ƯCLN(16n+5; 6n+2) là d. Ta có:

16n+5 chia hết cho d => 48n+15 chia hết cho d

6n+2 chia hết cho d => 48n+16 chia hết cho d

=> 48n+16-(48n+15) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(16n+5; 6n+2) = 1

=> \(\frac{16n+5}{6n+2}\)tối giản (Đpcm)

13 tháng 3 2019

khó thế

13 tháng 3 2019

a) Gọi ( 6n+5 ; 3n+2 ) = d 

\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+5⋮d\\6n+4⋮d\end{cases}\Rightarrow}\left(6n+5\right)-\left(6n+4\right)⋮d}\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\)phân số p là phân số tối giản .

26 tháng 5 2016

Gọi d là ƯC của 4n + 7 và 6n + 1

Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d

<=>   12n + 21 chia hết cho d và 12n + 2 chia hết cho d

=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d

Vì 19 là số nguyên tố => d = 1

Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản

26 tháng 5 2016

Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản

10 tháng 3 2019

a)                       Giải

Đặt \(d=\left(16n+5,6n+2\right)\)

\(\Rightarrow\hept{\begin{cases}\left(16n+5\right)⋮d\\\left(6n+2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[3\left(16n+5\right)\right]⋮d\\\left[8\left(6n+2\right)\right]⋮d\end{cases}}\)

\(\Rightarrow\left[8\left(6n+2\right)-3\left(16n+5\right)\right]⋮d\)

\(\Rightarrow\left[48n+16-48n-15\right]⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

Vậy phân số \(\frac{16n+5}{6n+2}\) tối giản với mọi n.

10 tháng 3 2019

b)                            Giải

Đặt \(d=\left(14n+3,21n+4\right)\)

\(\Rightarrow\hept{\begin{cases}\left(14n+3\right)⋮d\\\left(21n+4\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[3\left(14n+3\right)\right]⋮d\\\left[2\left(21n+4\right)\right]⋮d\end{cases}}\)

\(\Rightarrow\left[3\left(14n+3\right)-2\left(21n+4\right)\right]⋮d\)

\(\Rightarrow\left[42n-9-42n-8\right]⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

Vậy phân số \(\frac{14n+3}{21n+4}\) tối giản với mọi n.

14 tháng 3 2019

bạn học giỏi nhỉ

8 tháng 6 2017

gọi d là ƯCLN ( n + 2 ; 2n + 3 )

Ta có : n + 2 \(⋮\)\(\Rightarrow\)2 . ( n + 2 ) \(⋮\)d ( 1 )

           2n + 3 \(⋮\)d ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)2 . ( n + 2 ) - ( 2n + 3 )

= ( 2n + 4 ) - ( 2n + 3 ) = 1 \(⋮\)d

\(\Rightarrow\)d = 1

Mà phân số tối giản thì có ƯCLN của tử số và mẫu số bằng 1

Vậy phân số \(\frac{n+2}{2n+3}\)là phân số tối giản

8 tháng 6 2017

để phân số là phân số tối giản điều kiên là : \(\left(n+2;2n+3\right)=1\)

Ta gọi ước chung lớn nhất của \(n+2;2n+3\)là \(d\)ta có: \(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow n+4-n-3⋮d\)\(\Rightarrow1⋮d\Leftrightarrow1\)

do đó \(UCLN\left(n+2;2n+3\right)=1\)vậy phân số là phân số tối giản