Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>-2x=90/91
hay x=-45/91
b: =>2x=-7
hay x=-7/2
c: ->-3x=-12
hay x=4
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
a; xy+2x + 2y =3
\(\Leftrightarrow x\left(y +2\right)+2y=3\)
\(\Leftrightarrow x\left(y+2\right)+2\left(y+2\right)=7\)
\(\Leftrightarrow\left(y+2\right).\left(x+2\right)=7\)
Do x;y\(\in\) Z nên y+2 ; x+2 \(\in\)Z
\(\Rightarrow\hept{\begin{cases}y+2=1\\x+2=7\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=5\end{cases}}}\)
\(\hept{\begin{cases}y+2=7\\x+2=1\end{cases}\Rightarrow\hept{\begin{cases}y=5\\x=-1\end{cases}}}\)
\(\hept{\begin{cases}y+2=-1\\x+2=-7\end{cases}\Rightarrow\hept{\begin{cases}y=-3\\x=-9\end{cases}}}\)
\(\hept{\begin{cases}y+2=-7\\x+2=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-9\\x=-3\end{cases}}}\)
Vậy (x;y)\(\in\)(5;-1) ; (-1;5) ; (-9;-3 ) ; (-3;-9)
a) xy + 2x + 2y = 3
=> x(y + 2) + 2y = 3
=> x(y + 2) + 2y + 4 = 7
=> x(y + 2) + 2(y + 2) = 7
=> (x + 2)(y + 2) = 7
Ta có 7 = 1.7 = (-1).(-7)
Lập bảng xét các trường hợp
x + 2 | 1 | 7 | -1 | -7 |
y + 2 | 7 | 1 | -7 | -1 |
x | -1 | 5 | -3 | -9 |
y | 5 | -1 | -9 | -3 |
Vậy các cặp (x;y) thỏa mãn là (-1;5) (5;-1) ; (-3; -9) ; (-9;-3)
b) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
=> 8(20 + xy) = 4x
=> 2(20 + xy) = x
=> 40 + 2xy = x
=> 2xy + 40 - x = 0
=> 2xy - x = -40
=> x(2y - 1) = -40
Vì y nguyên => 2y - 1 nguyên
mà 2y - 1 luôn không chia hết cho 2 với mọi y nguyên (1)
lại có x(2y - 1) = - 40
=> 2y - 1 \(\in\)Ư(-40) (2)
Từ (1) (2) => \(2y-1\in\left\{5;-5;1;-1\right\}\)
Khi 2y - 1 = 5 => x = -8
=> y = 3 ; x = -8
Khi 2y - 1 = -5 => x = 8
=> y = -2 ; x = 8
Khi 2y - 1 = 1 => x = -40
=> y = 1 ; x = -40
Khi 2y - 1 = - 1 => x = 40
=> y = 0 ; x = 40
Vậy các cặp (x;y) thỏa mãn là ( -8 ; 3) ; (8 ; -2) ; (-40 ; 1) ; (40 ; 0)
ta có:\(A=\frac{8^9+12}{8^9+7}=\frac{8^9+7+5}{8^9+7}=\frac{8^9+7}{8^9+7}+\frac{5}{8^9+7}=1+\frac{5}{8^9+7}\)
\(B=\frac{8^{10}+4}{8^{10}-1}=\frac{8^{10}-1+5}{8^{10}-1}=\frac{8^{10}-1}{8^{10}-1}+\frac{5}{8^{10}-1}=1+\frac{5}{8^{10}-1}\)
vì 810-1>89+7
\(\Rightarrow\frac{5}{8^{10}-1}<\frac{5}{8^9+7}\)
\(\Rightarrow1+\frac{5}{8^{10}-1}<1+\frac{5}{8^9+7}\)
=>A<B
cau 1 :1,6
câu 2 : sai đề bài
cau 3 chua lam duoc
cau 4 : chua lam duoc
cau 5 :101/10
1) 2n - 5 \(⋮\)n + 1
2(n + 1) - 7 \(⋮\)n + 1
Do 2(n+1) \(⋮\)n+1 nên 7 \(⋮\)n+1 \(\Rightarrow\)n + 1 \(\in\)Ư(7) = { 1; -1; 7; -7}
Với n + 1 = 1 \(\Rightarrow\)n = 0
n + 1 = -1 \(\Rightarrow\)n = -2
n + 1 = 7 \(\Rightarrow\)n = 6
n + 1 = -7 \(\Rightarrow\)n = -8
Vậy n = { 0; -2; 6; -8}
Thôi được, mình làm lại phần a nhé!
a, \(\frac{x}{3}=\frac{x+1}{4}\)
=> 4x = 3(x+1)
4x = 3x + 3.1
4x - 3x = 3
=> x = 3
Vậy x = 3
a, \(\frac{x}{3}=x+\frac{1}{4}\)
=> \(\frac{x}{3}-x=\frac{1}{4}\) => \(\frac{x}{3}-\frac{3x}{3}=\frac{1}{4}\) => \(-\frac{2x}{3}=\frac{1}{4}\)
=> (-2x).4 = 3.1
-2x = \(\frac{3}{4}\) => \(x=\frac{3}{4}:\left(-2\right)=-\frac{3}{8}\)
Vậy x = \(-\frac{3}{8}\)
b, \(\frac{x}{6}=x+\frac{y}{3}=-\frac{8}{12}\)
=> \(\frac{x}{6}=-\frac{8}{12}\) => 12x = 6. (-8) = -48 => x = -48 : 12 = -4
Có \(x+\frac{y}{3}=-\frac{8}{12}\)
=> \(-4+\frac{y}{3}=-\frac{8}{12}\) => \(\frac{y}{3}=-\frac{8}{12}+4=\frac{10}{3}\)
=> y = 10.
Vậy x = -4 và y = 10