Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Giải :
Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\) \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)
\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)
\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)
\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)
\(\Rightarrow E⋮6\)
Do \(E⋮6\)nên \(E\div6\)dư 0
Vậy \(E\div6\)có số dư bằng \(0\)
Bài 2:
Giải :
Ta có: \(n.\left(n+2\right).\left(n+7\right)\)
\(=\left(n^2+2n\right).\left(n+7\right)\)
\(=n^3+2n^2+7n^2+14n\)
\(=n^3+9n^2+14n\)
\(=n.\left(n^2+9n+14\right)\)
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
1, Để \(\frac{n+5}{n}\)là số nguyên<=>n+5 chia hết cho n<=>n chia hết cho n và 5 chia hết cho n<=>n thuộc ước của 5={-5;-1;1;5}<=> n=-5;-1;1;5
2,a:5 dư 1<=> a-1 chia hết cho 5 <=> a-1+45 chia hết cho 5 <=> a+44 chia hết cho5
a:7 dư 5 <=> a-5 chia hết cho 7 <=> a-5 +49 chia hết cho 7 <=> a+44 chia hết cho 7
=> a+44 thuộc BC(5;7)
<=> Ta có: 5=5
7=7
<=>BCNN(5;7)=5.7=35
<=>a+44=BC(5;7)=B(35)={70;105;140;175;....}
<=>a={26;61;96;131;.........}
3, gọi số cần tìm là x
<=> x=26.32=576
Con " Nguyễn Huyền Trang " đéo biết thì trả lời làm cái l*n gì
5)
Gọi số tự nhiên nhỏ nhất cần tìm là a (a thuộc N*)
Theo bài ra ta có:
a chia 3 dư 1=> a + 2 chia hết cho 3
a chia 4 dư 2=> a + 2 chia hết cho 4
a chia 5 dư 3=> a + 2 chia hết cho 5
a chia 6 dư 4=> a + 2 chia hết cho 6
a chia hết cho 11
=> a + 2 thuộc BC(3; 4; 5; 6)
a chia hết cho 11
BCNN(3; 4; 5; 6) = 60
=> a + 2 thuộc B(60) = {0; 60; 120; 180; 240; 300; 360; 420; 480; ... }
=> a thuộc {x; 59; 118; 178; 238; 298; 358; 418; 478; ... }
Mà a là số tự nhiên nhỏ nhất chia hết cho 11 => a = 418
Vậy số tự nhiên cần tìm là 418.