K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2015

4 số tự nhiên chia cho 5 được 1 số dư khác nhau

\(\Rightarrow\) trong 4 số, có 1 số chia 5 dư 1 hoặc 2 hoặc 3 hoặc 4

Ta có 5k + 1 + 5k + 2 + 5k + 3 + 5k + 4 = 20k + 10 = 5.(4k + 2) chia hết cho 5

8 tháng 7 2021

Gọi \(k⋮5\)

=> 4 số tự nhiên liên tiếp không chia hết cho 5 là : 

  \(k+1,k+2,k+3,k+4\)

Khi chia cho 5 dư : 1, 2, 3, 4

Tổng 4 số là : 

 Tổng =   \(\left(k+1\right)+\left(k+2\right)+\left(k+3\right)+\left(k+4\right)\)

\(=4k+10\)

Ta có \(k⋮5\Rightarrow4k⋮5\)

     \(\Rightarrow10⋮5\)

Vậy tổng = \(\left(4k+10\right)⋮5\)( đpcm ) 

        Ps: nhớ k :33

                                                                                                                                               # Aeri # 

15 tháng 10 2017

Gọi 4 số đó là a+1 ; a+2 ; a+3 ; a+4.

4 số đó chia 5 được các số dư khác nhau: Các số dư là: 1; 2; 3 và 4.

Giả sử a+1 : 5 dư 1; ...

=> [(a+1)-1]=  a chia hết cho 5; ...

Tổng của chúng là:

(a+1) + (a+2) + (a+3) + (a+4) = a+1 + a+2 + a+3 + 4 = 5a + 1 + 2 + 3 + 4 = 5a + 10 

*Vì 5a chia hết cho 5 

và 10 chia hết cho 5

=> tổng của 4 số đó chia hết cho 5.

15 tháng 10 2017

4 số không chia hết cho 5 đc các số dư khác nhau là 5k+1,5k+2,5k+3,5k+4

tổng của chúng là 20k+10 sẽ chia hết cho 5

vậy tổng 4 số đó chia hết cho 5

11 tháng 1 2016

neu 5 stn deu ko chia het cho 5 ma co so du khac nhau thi ta co : 

+  So chia 5 du 1 co dang 5k +1 

+   So chia 5 du 2 co dang 5k+2

+   So chia 5 du 3 co dang 5k +3 

+ So chia 5 du 4 co dang 5k+4

tong cac stn do la :

5k +1+ 5k+ 2 +5k+3 +5k+4 

= 5k .4 + ( 1+2+3+4)

= 5k.4+10

Vi : 5k chia het cho 5 nen\(\Rightarrow\)5k.4 chia het cho 5

      10 chia het cho 5 

\(\Rightarrow\)5k .4 +10 chia het cho 5 

vay tong 4 stn do chia het cho 5  ( dpcm)

tick cho minh nha

11 tháng 1 2016

neu 4 stn do chia 5 dc nhung so du khac nhau ma so nao chia cung deu du ta co :

+   so chia 5 du 1 co dang 5k+1

+  so chia 5 du 2 co dang 5k+2

+  so chia 5 du 3 co dang 5k +3 

+ so chia 5 du 4 co dang 5k +4

tong 4 stn la: 

5k+1 +5k+2+5k+3+5k+4

= 5k .4 + ( 1+2+3+4)

= 5k.4 +10

Vi : 5k chia het cho 5 nen\(\Rightarrow\)5k.4 chia het cho 5

     10 chia het cho 5

\(\Rightarrow\)5k.4+10chia het cho 5

vay : tong 4 stn do chia het cho 5 ( dpcm)

tick minh nha

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

3 tháng 9 2015

Gọi 4 số đó là 5k+1; 5k+2; 5k+3; 5k+4

Ta có:

(5k+1)+(5k+2)+(5k+3)+(5k+4) = 5k+1+5k+2+5k+3+5k+4

 = 5k.(1+1+1+1)+(1+2+3+4)

 = 5k.4+10

Mà 5k.4 chia hết cho 5 và 10 chia hết cho 5 => tổng của 4 số tự nhiên không chia hết cho 5 chia hết cho 5

20 tháng 10 2015

số đó chia hết thì tùy thuộc vào số dư

nếu các số dư cộng với nhau chia hết cho 5 thì tổng các số cũng chia hết cho 5