K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

Câu 2:

Dựng hình bình hành ABDE \(\Rightarrow\) O là trung điểm EB \(\Rightarrow\overrightarrow{OB}=\overrightarrow{EO}\)

Ta có:

\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\left|\overrightarrow{EO}+\overrightarrow{OC}\right|=\left|\overrightarrow{EC}\right|=EC\) \(=ED+DC=a+2a=3a\)

26 tháng 1 2021

Gọi N là trung điểm BC

\(\left|\overrightarrow{MA}+\overrightarrow{MC}+2\overrightarrow{MB}+2\overrightarrow{OC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow\left|2\overrightarrow{MO}+2\overrightarrow{MB}+2\overrightarrow{OC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow\left|2\overrightarrow{MC}+2\overrightarrow{MB}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow4\left|\overrightarrow{MN}\right|=\left|\overrightarrow{BD}\right|\)

\(\Rightarrow\left|\overrightarrow{BD}\right|=4\left|\overrightarrow{MN}\right|=4\left|\overrightarrow{DN}+\overrightarrow{MD}\right|\ge4MD-4DN\)

\(\Rightarrow4MD\le BD+4DN\)

\(\Leftrightarrow MD\le\dfrac{BD+4DN}{4}=\dfrac{a\sqrt{2}+2a\sqrt{5}}{4}=\dfrac{2\sqrt{5}+\sqrt{2}}{4}a\)

26 tháng 1 2021

Gọi N là trung điểm AB

\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)

\(\Leftrightarrow2\left|\overrightarrow{MN}\right|=\left|\overrightarrow{BA}\right|\)

\(\Leftrightarrow MN=\dfrac{a^2}{2}\)

\(\Rightarrow\Delta MAB\) vuông tại M

Áp dụng BĐT AM-GM:

\(\Rightarrow MH^2=HA.HB\le\dfrac{\left(HA+HB\right)^2}{4}=\dfrac{AB^2}{4}=\dfrac{a^2}{4}\)

\(\Rightarrow MH\le\dfrac{a}{2}\)

NV
13 tháng 1 2021

Chắc chắn là đề bài sai rồi

Vế trái là 1 đại lượng vô hướng

Vế phải là 1 đại lượng có hướng (vecto)

Hai vế không thể bằng nhau được

14 tháng 1 2021

Em viết nhầm ạ, vế phải đó là 

\(\overrightarrow{IJ}^2\)

NV
24 tháng 12 2020

1.

Đặt \(P=\left|\overrightarrow{AD}+3\overrightarrow{AB}\right|\Rightarrow P^2=AD^2+9AB^2+6\overrightarrow{AD}.\overrightarrow{AB}\)

\(=AD^2+9AB^2=10AB^2=10a^2\)

\(\Rightarrow P=a\sqrt{10}\)

2.

Tam giác ABC đều nên AM là trung tuyến đồng thời là đường cao \(\Rightarrow AM\perp BM\)

\(AM=\dfrac{a\sqrt{3}}{2}\) ; \(BM=\dfrac{a}{2}\)

\(T=\left|\overrightarrow{MA}+2\overrightarrow{MB}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\)

\(\Rightarrow T^2=MA^2+4MB^2+4\overrightarrow{MA}.\overrightarrow{MB}=MA^2+4MB^2\)

\(=\left(\dfrac{a\sqrt{3}}{2}\right)^2+4\left(\dfrac{a}{2}\right)^2=\dfrac{7a^2}{4}\Rightarrow T=\dfrac{a\sqrt{7}}{2}\)

3.

\(T=\left|\overrightarrow{AB}+\overrightarrow{CG}\right|=\left|\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\right|=\left|\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{AB}\right|\)

\(=\left|\dfrac{4}{3}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AC}\right|\Rightarrow T^2=\dfrac{16}{9}AB^2+\dfrac{4}{9}AC^2-\dfrac{16}{9}\overrightarrow{AB}.\overrightarrow{AC}\)

\(=\dfrac{20}{9}AB^2-\dfrac{16}{9}AB^2.cos60^0=\dfrac{20}{9}a^2-\dfrac{16}{9}a^2.\dfrac{1}{2}=\dfrac{4}{3}a^2\)

\(\Rightarrow T=\dfrac{2a}{\sqrt{3}}\)

17 tháng 5 2017

a) Do vật đứng yên nên \(\overrightarrow{F_1}+\overrightarrow{F_2}+\overrightarrow{F_3}=\overrightarrow{0}\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\).
Suy ra M là trọng tâm tam giác ABC.
A B C M E O
Gọi O là trung điểm của AB. Theo quy tắc trung điểm ta có:
\(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MO}=\overrightarrow{ME}\).
Do tam giác MAB cân tại M và \(\overrightarrow{AMB}=60^o\) nên tam giác MAB đều và \(MO\perp AB\).
Áp dụng định lý Pi-ta-go trong tam giác MOB ta có:
\(MO=\sqrt{MA^2-OA^2}=\sqrt{100^2-50^2}=50\sqrt{3}\).
Suy ra: \(ME=2MO=2.50\sqrt{3}=100\sqrt{3}\).
b)
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{MC}=-\left(\overrightarrow{MA}+\overrightarrow{MB}\right)\)
Vì vậy véc tơ \(\overrightarrow{MC}\) ngược hướng với véc tơ \(\overrightarrow{MA}+\overrightarrow{MB}\).
Theo kết quả câu a ta suy ra: \(\left|\overrightarrow{ME}\right|=100\sqrt{3}\).
Nên véc tơ \(\overrightarrow{MC}\) có độ dài \(100\sqrt{3}\) và ngược hướng với véc tơ \(\overrightarrow{MA}+\overrightarrow{MB}\).
Vì vậy lực \(\overrightarrow{F_3}\) có cường độ \(100\sqrt{3}N\) và ngược hướng với véc tơ \(\overrightarrow{MA}+\overrightarrow{MB}\).