Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
(a) Thủy ngân là kim loại có nhiệt độ nóng chảy thấp nhất.
(b) Nguyên tử của các nguyên tố Na, Cr và Cu đều có một electron ở lớp ngoài cùng.
Đáp án A
(a) Thủy ngân là kim loại có nhiệt độ nóng chảy thấp nhất.
(b) Nguyên tử của các nguyên tố Na, Cr và Cu đều có một electron ở lớp ngoài cùng.
Đáp án A
Dựa vào cấu hình suy ra vị trí trong bảng tuần hoàn từ đó suy đoán chất cần tìm
Đáp án A
Các cấu hình electron không phải của kim loại là: (2) 1s22s22p63s23p3 và (4) 1s22s22p3
2 cấu hình electron này đều có 5 e lớp ngoài cùng ð Chúng là phi kim hoặc á kim
Liên kết giữa kim loại với phi kim điển hình
=> Liên kết ion
=> Đáp án C
Công thức tổng quatscuar số hạng nguyên tử là:\(^{^{2s+1}}X_j\)
+ với Cu ta có cấu hình e:\(^{1s^22s^22p^63s^23p^64s^13d^{10}}\) số e độc thân N=1 =>s=\(\frac{N}{2}=0.5\)
\(L=\Sigma ml=0\) =>X là S , mặt khác số e phân lớp ngoài cùng điền vào các ô lượng tử bằng 1 nửa trạng thái bão hòa =>j=|L-s|=0.5
Số hạng nguyên tử của Cu là \(^2S_{0.5}\)
+ với Cr ta có cấu hình e :\(^{1s^22s^22p^63s^23p^64s^13d^5}\) số e độc thân N=6 => s=N/2=3
\(L=\Sigma ml=0\) suy ra X là S
Mặt khác ta có số e điền ở phân lớp ngoài cùng băng 1 nửa trạng thái bão hòa =>j=|L-s|=3
số hạng nguyên tử của Cr là \(^7S_3\)
+ với Ag ta có cấu hình e :\(1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^14d^{10}\) số e độc thân N=1 =>s=N/2=0.5
\(L=\Sigma ml=0\) suy ra X là S
Số e điền ở phân lớp ngoài cùng bằng 1 nửa trạng thái bão hòa => j=|L-s|=0.5
Suy ra số hạng nguyên tử của Ag là :\(^2S_{0.5}\)
+ với Au ta có cấu hình e:\(1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^14f^{14}5d^{10}\) số e độc thân là N=1 => s=N/2=0.5
\(L=\Sigma ml=0\) suy ra X là S
Số e điền vào phân lớp ngoài cùng chỉ băng 1 nửa trạng thái bão hòa =>j=|L-s|=0.5
Suy ra số hạng nguyên tử của Au là :\(^2S_{0.5}\).
Ta có: Cu: 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\)4s\(^1\)3d\(^{10}\)
N=1, S=\(\frac{N}{2}\)=\(\frac{1}{2}\)=> 2s+1= 2; L=0; J= L+S=\(\frac{1}{2}\) => S\(^2_{\frac{1}{2}}\)
Cr: 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\)4s\(^1\)3d\(^5\)
N=6, S=\(\frac{N}{2}\)=3, => 2s+1= 7; L=0; J=|L-S|=|0-3|=3 => S\(^7_3\)
Au: 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\)4s\(^2\)3d\(^{10}\)4p\(^6\)5s\(^2\)4d\(^{10}\)5p\(^6\)6s\(^2\)4f\(^{14}\)5d\(^9\)
N=1, S=\(\frac{N}{2}\)=\(\frac{1}{2}\), => 2s+1= 2, L= 2, J=L+S= 2+ \(\frac{1}{2}\)=\(\frac{5}{2}\) => D\(^2_{\frac{5}{2}}\)
Ag: 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\)4s\(^2\)3d\(^{10}\)4p\(^6\)5s\(^1\)4d\(^{10}\)
N=1, S=\(\frac{1}{2}\), 2s+1=2, L=0, J= \(\frac{1}{2}\) => S\(^2_{\frac{1}{2}}\)