Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường HB
\(\Rightarrow\)ABHD là hình chữ nhật \(\Rightarrow AD=BH=12cm\)và \(AB=DH=11cm\)
Áp dụng định lý Pytago trong tam giác vuông BHC ta được:
\(BH^2=BH^2+HC^2\)
\(\Rightarrow HC=\sqrt{BC^2-BH^2}=\sqrt{13^2-12^2}=5cm\)
\(\Rightarrow DC=DH+HC=11+5=16cm\)
Áp dụng định lý Pytago trong tam giác vuông ADC ta được:
\(AC^2=AD^2+DC^2\)
\(\Rightarrow AC=\sqrt{AD^2+DC^2}=\sqrt{12^2+16^2}=20cm\)
Vậy: \(AC=20cm\)
P/s: Câu hỏi của Do Thi Lan - Toán lớp 8 - Học toán với OnlineMath
từ B kẻ BE vg góc vs DC ( E thuộc DC)
xét tg ABED có: ^A=^ADE=^DEB=90
=>tg ABED là hcn => AB=DE=11cm ; AD=BE=12cm
xét tg BEC vg tại E có: BE^2 +EC^2=BC^2 (ĐL py-ta-go)
<=> 12^2 +EC^2 =13^2
<=> EC^2=13^2-12^2=25
=.> EC=5(vì EC>0)
Ta có: DC=DE+EC (vì E thuộc DC)
=> DC=11+5=16 (cm)
Vậy DC=16cm
Kẻ \(BH\perp DC\)
Xét tứ giác ABHD có \(\widehat{BAD}=\widehat{ADH}=\widehat{DHB}=90^o\)
\(\Rightarrow\)Tứ giác ABHD là hình chữ nhật
\(\Rightarrow\hept{\begin{cases}DH=AB=11\left(cm\right)\\BH=AD=12\left(cm\right)\end{cases}}\)
Áp dụng định lý Pi-ta-go cho \(\Delta BHC\)vuông tại H ta được :
\(BH^2+HC^2=BC^2\)
\(\Leftrightarrow12^2+HC^2=13^2\)
\(\Leftrightarrow HC^2=25\)
\(\Leftrightarrow HC=5\left(cm\right)\)
Ta có \(CD=HC+DH=5+11=16\left(cm\right)\)
Áp dụng định lí Py-ta-go cho \(\Delta ADC\)vuông tại D ta được :
\(AD^2+DC^2=AC^2\)
\(\Leftrightarrow12^2+16^2=AC^2\)
\(\Leftrightarrow AC^2=400\)
\(\Leftrightarrow AC=20\left(cm\right)\)
Vậy độ dài cạnh AC là 20 cm
Hình thang ABCD có \(\widehat{A}=\widehat{D}=90^o\), AB = 11cm, AD = 12cm, BC = 13cm. Tính độ dài AC
Đáp án cần chọn là: C
Ta có DH = 1 2 (CD – AB) = 1 2 (22 – 12)
Do ABCD là hình thang cân nên AD = BC = 13 cm
Áp dụng định lí Py-ta-go vào tam giác ADH vuông tại H ta có
A D 2 = A H 2 + D H 2 ⇒ A H 2 = A D 2 - D H 2 = 13 2 - 5 2 ⇒ A H = 12
Vậy AH = 12cm.
Xét \(\Delta\)ABD vuông tại A
Áp dụng định lí Py-ta-go, ta có:
BD2 = AD2 + AB2
\(\Rightarrow\) BD2 = 122 + 52 = 169 (cm)
\(\Rightarrow\) BD = \(\sqrt{169}\) = 13 (cm) Xét \(\Delta\) BCD có BC = BD = 13 cm \(\Rightarrow\) \(\Delta\) BCD cân tại B Qua B kẻ đường cao BH cắt CD tại H \(\Rightarrow\) BH cũng là đường trung tuyến ( vì \(\Delta\) BCD cân tại B ) Xét tứ giác ABHD có \(\widehat{BAD}=\widehat{ADH}=\widehat{BHD}=90\)0 \(\Rightarrow\) tứ giác ABHD là HCN \(\Rightarrow\) HB = AD = 12 cm Xét \(\Delta\) BHC có \(\widehat{BHC}=90\)0 Áp dụng định lí Py-ta-go, ta có: BC2 = HB2 + HC2 \(\Rightarrow\) 132 = 122 + HC2 \(\Rightarrow\) HC2 = 132 - 122 = 25 ( cm) \(\Rightarrow\) HC = \(\sqrt{25}=5\left(cm\right)\) Vì BH cũng là đường trung tuyến (cmt) \(\Rightarrow\) CD = 2*5 = 10 (cm) \(\Rightarrow\) đpcmKẻ \(BH\perp CD\left(H\in CD\right)\)
Ta có: ABHD là hình chữ nhật => BH=AD=12 và DH=AB=11
Áp dụng định lí Pytago vào tam giác vuông BHC tại H có: \(HC=\sqrt{BC^2-BH^2}=\sqrt{13^2-12^2}=5\)
=> CD=DH+HC=11+5=16
Áp dụng định lí Pytago vào tam giác vuông ADC tại D có: \(AC=\sqrt{AD^2+CD^2}=\sqrt{12^2+16^2}=20\)
Vậy AC=20cm
B.12cm