Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{5n+7}{n-3}=\frac{5}{3}\)
\(\Leftrightarrow\left(5n+7\right)3=5\left(n-3\right)\)
\(\Leftrightarrow15n+21=5n-15\)
\(\Leftrightarrow15n-5x=-15-21\)
\(\Leftrightarrow10n=-36\)
\(\Leftrightarrow n=-\frac{18}{5}\)
\(b,A\inℕ\Rightarrow5n+7⋮n-3\)
\(\Rightarrow5n-15+22⋮n-3\)
\(\Rightarrow5(n-3)+22⋮n-3\)
\(\Rightarrow22⋮n-3\)
\(\Rightarrow n-3\inƯ(22)=[\pm1,\pm2,\pm11,\pm22]\)
bạn tự vẽ bảng
để\(\frac{2n+1}{3n+2}\)có giá trị nguyên => \(2n+1⋮3n+2=>3\left(2n+1\right)⋮3n+2\)
\(< =>6n+3⋮3n+2\)(1)
Ta lại có : \(3n+2⋮3n+2\)với mọi n \(=>6n+4⋮3n+2\)(2)
Từ (1) và (2) suy ra \(\left(6n+4\right)-\left(6n+3\right)⋮3n+2\)<=> \(1⋮3n+2\)
Vì n là STN,do đó \(3n+2\inƯ\left(1\right)=\left(1\right)\)
Với 3n+2=1=>n=\(-\frac{1}{3}\)(loại)
Vậy k có số tự nhiên n thỏa mãn,các bài còn lại làm tương tự
bai 3
\(A=\frac{10^{2004}+1}{10^{2005}+1}\)
\(10A=\frac{10^{2004}+10}{10^{2005}+1}\)
\(10A=1\frac{9}{10^{2005}+1}\)
\(B=\frac{10^{2005}+1}{10^{2006}+1}\)
\(10B=\frac{10^{2005}+10}{10^{2006}+1}\)
\(10B=1\frac{9}{10^{2006}+1}\)
Vì \(1\frac{9}{10^{2005}+1}>1\frac{9}{10^{2006}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
bai 4
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^8}\)
\(\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+....+\frac{1}{3^9}\)
\(A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^9}\)
Bạn tham khảo link này nhé!
https://olm.vn/hoi-dap/detail/71393518426.html
Answer:
Đáp án chọn D, {-1;1;-3;3}
*Giải thích:
Ta có:
\(\dfrac{n+3}{n}=\dfrac{n}{n}+\dfrac{3}{n}=1+\dfrac{3}{n}\)
\(\Rightarrow\) \(\dfrac{n+3}{3}\) là số nguyên thì \(\dfrac{3}{n}\) là số nguyên.
Để \(\dfrac{3}{n}\) là số nguyên thì \(3 ⋮ n\) hay \(n\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)\in\left\{-1;1;-3;3\right\}\)
Vậy để \(\dfrac{n+3}{3}\) là số nguyên thì \(n=\left\{-1;1;-3;3\right\}\)
Đáp án: D.
Cách giải:
Chúc học tốt!