Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1\right)\)
\(\overrightarrow{BA}=\left(6;6\right)=6\left(1;1\right)\)
d cách đều 2 điểm AB khi d đi qua M hoặc d song song AB
TH1: d đi qua M
\(y'=\dfrac{1}{\left(x+1\right)^2}\) , gọi tiếp điểm có hoành độ \(x_0\Rightarrow\) phương trình tiếp tuyến:
\(y=\dfrac{1}{\left(x_0+1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+1}{x_0+1}\)
Do tiếp tuyến qua M nên: \(1=\dfrac{1}{\left(x_0+1\right)^2}\left(-1-x_0\right)+\dfrac{2x_0+1}{x_0+1}\)
\(\Leftrightarrow x_0=1\Rightarrow\)tiếp tuyến: \(y=\dfrac{1}{4}\left(x-1\right)+\dfrac{3}{2}\)
TH2: tiếp tuyến song song AB \(\Rightarrow\) có hệ số góc \(k=\dfrac{1}{1}=1\)
\(\Rightarrow\dfrac{1}{\left(x+1\right)^2}=1\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=-2\Rightarrow y=3\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=1\left(x-0\right)+1\\y=1\left(x+2\right)+3\end{matrix}\right.\)
\(y=\dfrac{2x+2}{x-1}\Rightarrow y'=\dfrac{-4}{\left(x-1\right)^2}\)
a. \(y'\left(2\right)=-4\)
Phương trình tiếp tuyến: \(y=-4\left(x-2\right)+4\Leftrightarrow y=-4x+12\)
b. Pt hoành độ giao điểm:
\(\dfrac{2x+2}{x-1}=2x-1\Leftrightarrow2x^2-5x-1=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{33}}{4}\\x=\dfrac{5+\sqrt{33}}{4}\end{matrix}\right.\)
\(y'\left(\dfrac{5-\sqrt{33}}{4}\right)=-\dfrac{17+\sqrt{33}}{8}\) ; \(y'\left(\dfrac{5+\sqrt{33}}{4}\right)=\dfrac{-17+\sqrt{33}}{8}\)
\(y\left(\dfrac{5-\sqrt{33}}{4}\right)=\dfrac{3-\sqrt{33}}{2}\) ; \(y\left(\dfrac{5+\sqrt{33}}{4}\right)=\dfrac{3+\sqrt{33}}{2}\)
Có 2 tiếp tuyến thỏa mãn:
\(\left[{}\begin{matrix}y=\dfrac{-17-\sqrt{33}}{8}\left(x-\dfrac{5-\sqrt{33}}{4}\right)+\dfrac{3-\sqrt{33}}{2}\\y=\dfrac{-17+\sqrt{33}}{8}\left(x-\dfrac{5+\sqrt{33}}{4}\right)+\dfrac{3+\sqrt{33}}{2}\end{matrix}\right.\)
Đề bài cho số liệu thật kì quặc
1.
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
2.
ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
3.
ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)
\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Câu 1. Hàm số xác định \(\Leftrightarrow\cos x\ne0\Leftrightarrow x\ne\dfrac{\pi}{2}+k2\pi\)
Câu 2. có \(-1\le\sin3x\le1\Leftrightarrow2\le\sin3x+3\le4\)
tập giá trị của hàm số : [2;4]