K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2:

a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

b: BC=4+9=13cm

AH=căn 4*9=6cm

S ABC=1/2*6*13=39cm2

6 tháng 2 2022

a) và (b không nhìn rõ

a)Xét tam giác HBA và tam giác ABD có:

góc AHB=góc DAB(=90độ)

góc B chung

=> tam giác HBA đồng dạng tam giác ABD (g-g)

b) xét tam giác HDA và tam giác ADB có

góc AHD =góc DAB(=90độ)

góc D chung

=> tam giác HDA đồng dạng tam giác ADB (g-g)

=>AD/BD=HD/BD=>AD^2=DH.BD

c)vì ABCD là hcn=> BC=AD=6cm

tam giác ABD vuông tại A=> BD^2=AD^2+AB^2(ĐL Pytago)

=>BD^2=6^2+8^2

=>BD=10(cm)

Có AD^2=DH.BD=>6^2=DH.10=>DH=3.6(cm)

tam giác ADH vuông tại H

=>Ad^2=AH^2+HD^2(ĐL Pytago)

=>6^2=AH^2+3,6^2

=>AH=4.8(cm)

hình bạn tự vé nhé.

tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=10\left(DO-BC>0\right)\)

b) xét \(\Delta ABC\) VÀ  \(\Delta HBA\) CÓ:

\(\widehat{BAC}=\widehat{AHB}\)

\(\widehat{B}\) CHUNG

\(\Rightarrow\Delta ABC\) đồng dạng vs  \(\Delta HBA\)

c)sửa đề:\(AB^2=BH.BC\)

TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)

\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)

\(\Rightarrow AH^2=BH.BC\)

a: Xet ΔIDC vuông tại I và ΔHAD vuông tại H có

góc IDC=góc HAD(=góc ABD)

=>ΔIDC đồng dạng với ΔHAD

b: ΔDCB vuông tại C có CI vuông góc DB

nên DI*DB=DC^2=AB^2

c: \(DB=\sqrt{8^2+6^2}=10\left(cm\right)\)

DE là phân giác

=>AE/DA=EB/DB

=>AE/4=EB/5=6/9=2/3

=>AE=8/3cm

20 tháng 4 2018

a) ADĐL pitago vào tam giác vuông DCB , có :

BC2 + DC2 = DB2

=> 62 + 82 = BD2

=> BD2 = 100

=> BD = 10 cm

b)

Xét tam giác ADB và tam giác AHD , có :

A^ = H^ = 90O

D^ ; góc chung

=> tam giác AHD ~ tam giác BAD (g.g)

c)

Vì tam giác AHD ~ tam giác BAD ( câu b )

=> \(\dfrac{AD}{HD}\)= \(\dfrac{BD}{AD}\)

=> AD2 = HD . BD

d)

20 tháng 4 2018

a) ΔABD vuông tại A (ABCD là hình chữ nhật)

⇒DB2=AB2+AD2(Đinh lí pitago)

DB2=82+62

⇔DB=\(\sqrt{100}\)=10(cm)

6 tháng 5 2021

a) Ta có :

AD = BC = 6 cm

Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, ta có :

1/AD^2 + 1/AB^2 = 1/AH^2

<=> 1/6^2 + 1/8^2 = 1/AH^2

<=> AH = 4,8(cm)

b)

Áp dụng Pitago trong tam giác BCD vuông tại C có :

BC^2 + CD^2 = BD^2

<=> 6^2 + 8^2 = DB^2

<=> BD = 10(cm)

Xét hai tam giác vuông AHB và BCD có :

AH/BC = 4,8/6 = 4/5

AB/BD = 8/10 = 4/5

Do đó tam giác AHB đồng dạng với tam giác BCD

11 tháng 3 2022

BẠN CÓ THỂ TRA THAY VÌ HỎI ĐC KO

 

11 tháng 3 2022

nhưng mà web này để hỏi mè =)))

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: 

Áp dụng hệ thức lượng trong tam giác vuông ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông ΔABH vuông tại A có HD là đường cao ứng với cạnh huyền BA, ta được:

\(AD\cdot AB=AH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(AE\cdot AC=AD\cdot AB\)

hay \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Xét ΔAED vuông tại A và ΔABC vuông tại A có 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Do đó: ΔAED\(\sim\)ΔABC

12 tháng 4 2021

Hình bạn tự vẽ nhé

a) Xét ΔABH và ΔCBA có :

^AHB = ^A = 900

^B chung

=> ΔABH ~ ΔCBA (g.g)

b) Vì ΔABC vuông tại A, áp dụng định lí Pythagoras ta có :

\(BC^2=AB^2+AC^2\)

<=> \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC có BD là phân giác của ^B nên theo tính chất đường phân giác trong tam giác ta có : \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{AD}{AB}=\dfrac{DC}{BC}=\dfrac{AD+DC}{AB+BC}=\dfrac{AC}{AB+BC}=\dfrac{8}{6+10}=\dfrac{1}{2}\)

=> \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{1}{2}\\\dfrac{DC}{BC}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\dfrac{1}{2}AB=3cm\\DC=\dfrac{1}{2}BC=5cm\end{matrix}\right.\)

c) Xét ΔABD và ΔHBI có :

^A = ^BHI = 90

^ABD = ^HBI ( do BD là phân giác của ^B )

=> ^ABD ~ ΔHBI (g.g)

=> \(\dfrac{AB}{HB}=\dfrac{BD}{BI}=\dfrac{AD}{HI}\)=> AB.BI = HB.BD ( đpcm )

d) Từ \(\dfrac{AB}{HB}=\dfrac{BD}{BI}=\dfrac{AD}{HI}\)=> \(\dfrac{AB}{AD}=\dfrac{BD}{BI}=\dfrac{HB}{HI}=2\)

Ta có : \(S_{ABD}=\dfrac{1}{2}AB\cdot AD=\dfrac{1}{2}\cdot6\cdot3=9cm^2\)

mà ta có \(\dfrac{S_{ABD}}{S_{HBI}}=2^2=4\)=> SABD = 4SHBI

<=> 9 = 4SHBI <=> SHBI = 9/4cm2

27 tháng 6 2023

tại sao ở câu c, Sabd/Shib lại bằng 22 vậy ạ?