K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

Bài 1 : 

Để phương trình có 2 nghiệm x1 , x2 

\(\Rightarrow\Delta'=\left(-1\right)^2-\left(2m-1\right)\ge0\)

\(\Rightarrow m\le1\)

\(\Rightarrow\) Khi đó phương trình có 2 nghiệm x1 , x2 thỏa mãn 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-1\end{cases}}\)

Mà \(3x_1+2x_2=1\Rightarrow x_1+2\left(x_1+x_2\right)=1\Rightarrow x_1+2.2=1\Rightarrow x_1=-3\)

Vì \(x_1=-3\) là 1 nghiệm của phương trình

\(\Rightarrow\left(-3\right)^2-2\left(-3\right)+2m-1=0\Rightarrow m=-7\)

 
24 tháng 4 2020

Bài 2 : 

\(ĐKXĐ:x\ne\pm4\)

Ta có : 

\(\frac{2x-1}{x+4}-\frac{3x-1}{4-x}=5+\frac{96}{x^2-16}\)

\(\Rightarrow\frac{2x-1}{x+4}+\frac{3x-1}{x-4}=5+\frac{96}{\left(x-4\right)\left(x+4\right)}\)

\(\Rightarrow\frac{2x-1}{x+4}\left(x+4\right)\left(x-4\right)+\frac{96}{\left(x-4\right)\left(x+4\right)}\left(x+4\right)\left(x-4\right)\)

\(\Rightarrow\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)=5\left(x+4\right)\left(x-4\right)+96\)

\(\Rightarrow5x^2+2x=5x^2+16\)

\(\Rightarrow2x=16\)

\(\Rightarrow x=8\)

\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)

\(=4m^2-4m+1-8m+8\)

\(=4m^2-12m+9=\left(2m-3\right)^2\)

Để phương trình có hai nghiệm phân biệt thì 2m-3<>0

hay m<>3/2

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)

Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)

\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)

\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)

\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)

\(\Leftrightarrow48m^2-250+85=0\)

Đến đây bạn chỉ cần giải pt bậc hai là xong rồi

9 tháng 3 2022

 \(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)

\(=\left(2m-3\right)^2+1>0\)

Vậy pt có 2 nghiệm pb  

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)

Ta có \(3x_1-4x_2=11\left(3\right)\)

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)

\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)

Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)

\(\Leftrightarrow m=4,125\)

1: Thay x=3 vào pt,ta được:

9+6+m=0

hay m=-15

2: \(\text{Δ}=2^2-4\cdot1\cdot m=-4m+4\)

Để phương trình có hai nghiệm thì -4m+4>=0

hay m<=1

Theo đề, ta có hệ phươg trình:

\(\left\{{}\begin{matrix}3x_1+2x_2=1\\x_1+x_2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.\)

Theo Vi-et,ta được:

\(x_1x_2=m\)

=>m=-35(nhận)

27 tháng 4 2023

loading...  

NV
17 tháng 4 2022

\(\Delta'=\left(m+4\right)^2-\left(m^2+8m+15\right)=1>0\Rightarrow\) pt luôn có 2 nghiệm pb với mọi m

Do \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1=m+4-1=m+3\\x_2=m+4+1=m+5\end{matrix}\right.\)

\(3x_1-2x_2=15\)

\(\Leftrightarrow3\left(m+3\right)-2\left(m+5\right)=15\)

\(\Leftrightarrow m=16\)

1:

\(\left\{{}\begin{matrix}\dfrac{2x+1}{x+1}+\dfrac{3y}{y-1}=1\\\dfrac{3x}{x+1}-\dfrac{4y}{y-1}=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2-\dfrac{1}{x+1}+3+\dfrac{3}{y-1}=1\\3-\dfrac{3}{x+1}-\dfrac{4y-4+4}{y-1}=10\end{matrix}\right.\)

=>-1/(x+1)+3/(y-1)=1-2-3=-5 và -3/(x+1)-4/(y-1)=10-3-4=3

=>x+1=13/11 và y-1=-13/18

=>x=2/11 và y=5/18

16 tháng 2 2022

bạn đăng tách ra cho mn giúp nhé 

a, Để pt có 2 nghiệm pb 

\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

\(x_1-3x_2=0\)(3) 

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)

16 tháng 2 2022

\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)

\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)

\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)

\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)

\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)