K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

Chọn đáp án A.

13 tháng 8 2018

Đáp án A

4 tháng 3 2018

Chọn C.

Phương pháp:

Tính chiều cao hình trụ và tính thể tích theo công thức

 

1 tháng 5 2018

Đáp án B

Gọi hình vuông thiết diện ABCD và O là tâm đường tròn đáy của hình trụ

Gọi H là trung điểm của AB, ta có

O H = a 2 ⇒ A H = O A 2 − A H 2 = a 2 − a 2 2 = a 3 2 ⇒ A B = a 3  

Chiều cao của khối trụ chính là độ dài cạnh của hình vuông bằng h = a 3  

Thể tích khối trụ là V = π r 2 h = π a 3 3

17 tháng 1 2018

Chọn B.

Phương pháp : Tính bán kính đáy và chiều cao hình trụ sau đó áp dụng công thức tính thể tích khối trụ.

11 tháng 9 2019

Chọn B.

Phương pháp:

Thiết diện qua trục của hình trụ có bán kính đáy R và chiều cao h là hình chữ nhật có kích thước 2R × h. Thể tích khối trụ bán kính đáy R và chiều cao h là V = πR 2 h .

Cách giải:

Một mặt phẳng qua trục cắt khối trụ theo thiết diện là một hình chữ nhật có diện tích bằng 16a2

⇒ 2 R . 2 R = 16 a 2 ⇔ R 2 = 4 a 2 ⇔ R = 2 a ⇒ h = 2 R = 4 a

Thể tích của khối trụ đã cho: V = πR 2 h = π . ( 2 a ) 2 . 4 a = 16 πa 3 .

16 tháng 1 2017

Đáp án là A

12 tháng 1 2018

25 tháng 1 2018

Đáp án D

Diện tích tam giác bằng 2 sin x 2 3 4 = 3 sin x .

Suy ra thể tích cần tích bằng  V = ∫ 0 π 3 sin x d x = - 3 cos x 0 π = 2 3 .