K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2015

vì y2 luôn lớn hơn hoặc bằng 0 nên 5.y2 cũng luôn lớn hơn hoặc bằng 0 

=> 6x2 < 74 => x2 < 74/6 <13

vì x nguyên nên x2 có thể nhận các giá trị 0; 1; 4; 9

x2 = 0 => 5y2 = 74 => y2 = 74/5 loại vì y nguyên

x2 = 1 => 5y2 = 68 => y2 = 68/5 loại vì y nguyên

x2 = 4 => 5y2 = 50 => y2 = 10 => loại

x2 = 9 => 5y2 = 20 => y2 = 4 => y = 2 hoặc -2 khi đps x = 3 hoặc -3

vậy có tất cả các cặp (x;y) là (3;2); (-3;2); (3;-2); (-3;-2);

12 tháng 3 2018

vì y2
 luôn lớn hơn hoặc bằng 0 nên 5.y
2
 cũng luôn lớn hơn hoặc bằng 0 
=> 6x2
 < 74 => x2
 < 74/6 <13
vì x nguyên nên x2
 có thể nhận các giá trị 0; 1; 4; 9
x
2
 = 0 => 5y2
 = 74 => y2
 = 74/5 loại vì y nguyên
x
2
 = 1 => 5y2
 = 68 => y2
 = 68/5 loại vì y nguyên
x
2
 = 4 => 5y2
 = 50 => y2
 = 10 => loại
x
2
 = 9 => 5y2
 = 20 => y2
 = 4 => y = 2 hoặc -2 khi đps x = 3 hoặc -3
vậy có tất cả các cặp (x;y) là (3;2); (-3;2); (3;-2); (-3;-2)

:3

30 tháng 7 2016

      (x - y + 2). (x - 2) + (x - y +2) . (2 - x) = 5

\(\Rightarrow\)  (x - y + 2). (x - 2 + 2 - x)                     = 5

\(\Rightarrow\)  (x - y + 2) . 0                                       = 5 ( không thỏa mãn)

\(\Rightarrow\)  Không tìm được cặp x, y nào thỏa mãn đề bài

 

10 tháng 7 2017

Giả sử :

\(x\le y\)(1)

=> \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{y}\)

=> \(\frac{2}{3}\ge\frac{2}{y}\)

=> \(\frac{1}{3}\ge\frac{1}{y}\Rightarrow3\ge y\)(2)

Lại có :

\(\frac{1}{x}+\frac{1}{y}\le\frac{2}{x}\)

=> \(\frac{2}{3}\le\frac{2}{x}\Rightarrow3\le x\)(3)

Từ (1) , (2) , (3) 

=> \(3\le x\le y\le3\)

=> x = y = 3

14 tháng 3 2016

Áp dụng bất đẳng thức cho ba số  \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\)  \(\Rightarrow\)  \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\)  \(\left(1\right)\)

\(y^2+z^2\ge2yz\)   \(\Rightarrow\)  \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\)  \(\left(2\right)\)

\(z^2+x^2\ge2xz\)  \(\Rightarrow\)  \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\)  \(\left(3\right)\)

Cộng từng vế của  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\)  ta được  \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)

\(\Leftrightarrow\)  \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(x=y=z=\frac{3}{2015}\)

Vậy,  \(P_{max}=2015\)  \(\Leftrightarrow\)   \(x=y=z=\frac{3}{2015}\)