K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

Ta có: 3.1-2.(-2) = 7 ⇒ Cặp (1; -2) là một nghiệm của phương trình 3x – 2y = 7

Các nghiêm khác của phương trình đó là: (3; 1); (-1; -5)

10 tháng 2 2019

 Thử trực tiếp ta thấy ngay x = -3 là nghiệm của bất phương trình (1) nhưng không là nghiệm bất phương trình (2), vì vậy (1) và (2) không tương đương do đó phép bình phương hai vế một bất phương trình không phải là phép biến đổi tương đương.

28 tháng 8 2018

Thay cặp số ( 1; 3) vào  vế trái của bất phương trình ta được :

5.1 – 2( 3-1) >0

Do đó, cặp số (1 ;3) không là nghiệm của bất phương trình đã cho.

Chọn C

15 tháng 2 2018

Làm hai vế của bất phương trình đầu vô nghĩa nên x = -7 không là nghiệm của bất phương trình đó. Mặt khác, x = -7 thỏa mãn bất phương trình sau nên x = -7 là nghiệm của bất phương trình này.

    Nhận xét: Phép giản ước số hạng  - 1 x + 7  ở hai vế của bất phương trình đầu làm mở rộng tập xác định của bất phương trình đó, vì vậy có thể dẫn đến nghiệm ngoại lai.

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

AH
Akai Haruma
Giáo viên
27 tháng 6 2021

Lời giải:
a/

PT $(1)$ có nghiệm $x=\frac{2}{3}$. PT $(2)$ có nghiệm $x=\frac{3}{2}$

Cộng 2 vế tương ứng của pt đã cho thì có:

$5x=5\Leftrightarrow x=1$

Vậy tập nghiệm của pt sau không giống 2 pt đầu nên câu trả lời là không.

b. 

PT đó không phải hệ quả của 1 trong 2 PT ban đầu vì \(\left\{\frac{2}{3}\right\}\not\subset\left\{1\right\}; \left\{\frac{3}{2}\right\}\not\subset\left\{1\right\}\)