Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện : \(x\in R\)
\(x^2-3x+\frac{7}{2}=\sqrt{\left(x^2-2x+2\right)\left(x^2+4x+4\right)}\)
\(\Leftrightarrow\left(x^2-3x+\frac{7}{2}\right)^2=\left(x^2-2x+2\right)\left(x^2+4x+4\right)\)
\(\Leftrightarrow x^4+9x^2+\frac{49}{4}-6x^3+7x^2-21x=x^4+4x^3+4x^2-2x^3-8x^2-8x+2x^2+8x+8\)
\(\Leftrightarrow-6x^3+16x^2-21x+\frac{49}{4}=2x^3-2x^2+8\)
\(\Leftrightarrow-8x^3+18x^2-21x+\frac{17}{4}=0\)
\(\Leftrightarrow-8x^3+2x^2+16x^2-4x-17x+\frac{17}{4}=0\)
\(\Leftrightarrow-2x^2\left(4x-1\right)+4x\left(4x-1\right)-17\left(4x-1\right)=0\)
\(\Leftrightarrow\left(4x-1\right)\left(2x^2-4x+17\right)=0\)
\(\Leftrightarrow4x-1=0\Leftrightarrow x=\frac{1}{4}\) (nhận) ( 2x2 - 4x + 17 >= 0 với mọi x thuộc R)
a)Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\\\sqrt{4-x}=b\end{cases}\left(a,b>0\right)}\) thì ta có;
\(a-b+ab+3=0\)
\(\Leftrightarrow a-b+ab-1=-4\)
\(\Leftrightarrow b\left(a-1\right)+\left(a-1\right)=-4\)
\(\Leftrightarrow\left(b+1\right)\left(a-1\right)=-4\)
Xét Ư(-4) giải pt ta có \(\hept{\begin{cases}a=-3\\b=0\end{cases}};\hept{\begin{cases}a=-1\\b=1\end{cases}};\hept{\begin{cases}a=0\\b=3\end{cases}};\hept{\begin{cases}a=2\\b=-5\end{cases}};\hept{\begin{cases}a=3\\b=-3\end{cases}}\)
Dễ thấy các nghiệm thu được chẳng có cái nào cả \(a,b>0\) nên ta có VÔ NGHIỆm
b)\(5\sqrt{x^3+1}=2\left(x^2+2\right)\)
ĐK; \(x\ge-1\)
\(pt\Leftrightarrow25\left(x^3+1\right)=4\left(x^2+2\right)^2\)
\(\Leftrightarrow-4x^4+25x^3-16x^2+9=0\)
\(\Leftrightarrow-\left(x^2-5x-3\right)\left(4x^2-5x+3\right)=0\)
Dễ thấy: \(4x^2-5x+3=0\) thì
\(\Leftrightarrow4\left(x-\frac{5}{8}\right)^2+\frac{23}{16}>0\forall x\) ( vô nghiệm)
Nên \(x^2-5x-3=0\Leftrightarrow x=\frac{5\pm\sqrt{37}}{2}\) (thỏa)
P/s: lấy số điện thoại ở đây ko tiện, nếu muốn cảm ơn hoặc ko hiểu chỗ nào thì ib nhé
Thắng Nguyễn làm sai rồi. đây là giải phương trình chứ có phải là phương trình nghiệm nguyên đâu nên ko thể xét ước đc