K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 3 2018

Bài 2:

Ta có: \(y=\frac{x-2}{x-1}\Rightarrow y'=\frac{1}{(x-1)^2}\)

Do đó pt tiếp tuyến của đồ thị (C) tại \(M(a, \frac{a-2}{a-1})\) là:

\(y=f'(a)(x-a)+f(a)\)

\(\Leftrightarrow y=\frac{1}{(a-1)^2}(x-a)+\frac{a-2}{a-1}\) (d)

Đường thẳng trên có vecto pháp tuyến \((\frac{1}{(a-1)^2}, -1)\) nên vecto chỉ phương là: \((1, \frac{1}{(a-1)^2})\)

Vecto chỉ phương của đường thẳng \(\overrightarrow{IM}\) là \((a-1,\frac{a-2}{a-1}-1)\)

Vì hai đường thẳng trên vuông góc với nhau nên:

\(\overrightarrow{d}.\overrightarrow{IM}=\overrightarrow{0}\)

\(\Leftrightarrow (1, \frac{1}{(a-1)^2})(a-1, \frac{a-2}{a-1}-1)=0\)

\(\Leftrightarrow a-1+\frac{1}{(a-1)^2}\left(\frac{a-2}{a-1}-1\right)=0\)

\(\Leftrightarrow a-1-\frac{1}{(a-1)^3}=0\)

\(\Leftrightarrow (a-1)^4=1\Leftrightarrow a=2, a=0\)

\(\Rightarrow \left[\begin{matrix} M=(2, 0)\\ M=(0,2)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
1 tháng 4 2018

Bài 1:

Gọi tọa độ điểm \(M(a,a^3-3a+1)\)

Có: \(y=x^3-3x+1\Rightarrow y'=3x^2-3\). Phương trình tiếp tuyến của (C) tại điểm $M$ là:

\(y=y'(a)(x-a)+y(a)\)

\(\Leftrightarrow y=(3a^2-3)(x-a)+a^3-3a+1\)

Để qua M kẻ được đúng một tiếp tuyến tới $(C)$ thì phương trình hoành độ giao điểm:

\((3a^2-3)(x-a)+a^3-3a+1=x^3-3x+1(*)\) chỉ có đúng duy nhất một nghiệm.

Ta có:

\((*)\Leftrightarrow (x^3-a^3)-(3x-3a)-(x-a)(3a^2-3)=0\)

\(\Leftrightarrow (x-a)(x^2+xa+a^2-3a^2)=0\)

\(\Leftrightarrow (x-a)(x^2+xa-2a^2)=0\)

\(\Leftrightarrow (x-a)^2(x+2a)=0\)

Để pt có nghiệm duy nhất thì \(a=-2a\Leftrightarrow a=0\)

\(\Rightarrow M(0,1)\)

NV
5 tháng 4 2022

a.

\(\left\{{}\begin{matrix}BB'\perp\left(ABC\right)\Rightarrow BB'\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(ABB'A'\right)\)

\(\Rightarrow BC=d\left(C;\left(A'AB\right)\right)\)

\(S_{A'AB}=\dfrac{1}{2}S_{ABB'A'}=\dfrac{3a^2}{2}\)

\(\Rightarrow V_{C.A'AB}=\dfrac{1}{3}BC.S_{A'AB}=\dfrac{1}{3}.2a.\dfrac{3a^2}{2}=a^3\)

b.

Theo cmt, \(BC\perp\left(ABB'A'\right)\Rightarrow BC\perp AN\)

Mà \(\left\{{}\begin{matrix}A'C\perp\left(P\right)\\AN\in\left(P\right)\end{matrix}\right.\) \(\Rightarrow AN\perp A'C\)

\(\Rightarrow AN\perp\left(A'BC\right)\Rightarrow AN\perp A'B\)

c.

Ta có: \(AA'||BB'\Rightarrow d\left(B;AA'\right)=d\left(N;AA'\right)\)

\(\Rightarrow S_{A'AN}=S_{A'AB}\)

Lại có: \(CC'||BB'\Rightarrow CC'||\left(ABB'A'\right)\)

\(\Rightarrow d\left(C';\left(ABB'A'\right)\right)=d\left(M;\left(ABB'A'\right)\right)\)

\(\Rightarrow V_{A'AMN}=V_{CA'AB}=a^3\)

NV
5 tháng 4 2022

undefined

26 tháng 2 2018

d(A;(IBC)=d(A;(A'BC) do I thuộc A'C

từ A hạ AD vuông góc xuống A'B

Do BC vuông gocs với cả (ABB'A') nên BC vuông góc với AD

như vậy AD đã vuông góc với cả (IBC)

d(A;(IBC))=AD=2/căn 5