Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đồ thị hàm số y = sin x trên đoạn [-2π, 2π]
Dựa vào đồ thị hàm số y = sinx
a) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị bằng -1 là:
x=−π2;x=3π2x=−π2;x=3π2
b) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị âm là:
x ∈ (-π, 0) ∪ (π, 2 π)
Quan sát đồ thị hàm số y = tan x trên đoạn [-π; 3π/2].
a. tan x = 0 tại các giá trị x = -π; 0; π.
(Các điểm trục hoành cắt đồ thị hàm số y = tanx).
b. tan x = 1 tại các giá trị x = -3π/4; π/4; 5π/4.
c. tan x > 0 với x ∈ (-π; -π/2) ∪ (0; π/2) ∪ (π; 3π/2).
(Quan sát hình dưới)
d. tan x < 0 khi x ∈ [-π/2; 0) ∪ [π/2; π)
(Quan sát hình dưới).
Dựa vào đồ thị hàm số y = cosx, để làm số nhận giá trị âm thì:
Đồ thị hàm số y = sin x:
Dựa vào đồ thị hàm số y = sin x ta thấy
y = sin x > 0
⇔ x ∈ (-2π; -π) ∪ (0; π) ∪ (2π; 3π) ∪…
hay x ∈ (k2π; π + k2π) với k ∈ Z.
Xét đồ thị hàm số y = sin x trên :
a. sin x = -1 ⇔
(Hoành độ giao điểm của đồ thị hàm số và đường thẳng y = -1).
b. sin x < 0
⇔ x ∈ (-π; 0) ∪ (π; 2π)
(Các khoảng mà đồ thị nằm phía dưới trục hoành).