Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\sqrt{9x^2-6x+2}=\sqrt{\left(9x^2-6x+1\right)+1}=\sqrt{\left(3x-1\right)^2+1}\ge\sqrt{1}=1\)
\(\sqrt{45x^2-30x+9}=\sqrt{5\left(9x^2-6x+1\right)+4}=\sqrt{5\left(3x-1\right)^2+4}\ge\sqrt{4}=2\)
\(\sqrt{6x-9x^2+8}=\sqrt{-\left(9x^2-6x+1\right)+9}=\sqrt{-\left(3x-1\right)^2+9}\le3\)
\(\Rightarrow VT\ge3\ge VP\)
mÀ đề lại cho \(VT=VP\) \(\Rightarrow\hept{\begin{cases}\sqrt{\left(3x-1\right)^2+1}=1\\\sqrt{\left(3x-1\right)^2+4}=2\\\sqrt{-\left(3x-1\right)^2+9}=3\end{cases}\Rightarrow x=\frac{1}{3}}\)
Vậy \(x=\frac{1}{3}\)
\(\sqrt{9x^2-6x+1}+\sqrt{25-30+9x^2}\)
=\(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}\)
=|3x-1|+|5-3x| ≥ |3x-1+5-3x|
<=> |3x-1|+|5-3x| ≥ |4|
=> Min A =4 khi (3x-1)(5-3x) ≥ 0
ta có bảng
=> x ≤ 1/3 hoặc x ≥ 5/3
vậy .....
\(9x^2-6x+2=\left(3x-1\right)^2+1=t\ge1\)
\(Pt\Rightarrow\sqrt{t}+\sqrt{5t-1}=\sqrt{10-t}\)
\(\Leftrightarrow5t-1=10-t+t-2\sqrt{t\left(10t-1\right)}\)
\(\Leftrightarrow2\sqrt{t\left(10t-1\right)}+5t=11\)
\(\Rightarrow VT\ge VP\left(t\ge1\right)\Rightarrow t=1\Rightarrow x=\frac{1}{3}\)