K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

- Đường tròn ngoại tiếp tam giác là đường tròn đi qua ba đỉnh của tam giác.

- Tâm đường tròn ngoại tiếp tam giác là giao điểm của các đường trung trực của các cạnh tam giác.

Sửa đề: Hai đường cao BN,CK

a: góc AKH+góc ANH=180 độ

=>AKHN nội tiếp

Tâm là trung điểm của AH

b: Xet ΔANB vuông tại N và ΔAKC vuông tại K có

góc A chung

=>ΔANB đồng dạng với ΔAKC

=>NB/KC=AN/AK

=>NB*AK=AN*KC

c: góc BKC=góc BNC=90 độ

=>BKNC nội tiếp

d: Xét ΔACB co

BN,CK là đường cao

BN cắt CK tại H

=>H là trực tâm

=>AH vuông góc CB

23 tháng 4 2017

Đường tròn ngoại tiếp tam giác là đường tròn đi qua ba đỉnh của tam giác. Tâm đường tròn ngoại tiếp tam giác là giao điểm của các đường trung trực của các cạnh tam giác.

11 tháng 2 2017

- Đường tròn nội tiếp tam giác là đường tròn tiếp xúc với ba cạnh của tam giác.

- Tâm đường tròn nội tiếp tam giác là giao điểm của các tia phân giác của các góc trong của tam giác.

23 tháng 4 2017

Đường tròn nội tiếp tam giác là đường tròn tiếp xúc với ba cạnh của tam giác. Tâm đường tròn nội tiếp tam giác là giao điểm của các tia phân giác của các góc trong của tam giác.

a: Xét tứ giác MBHC có

\(\widehat{MBH}+\widehat{MCH}=180^0\)

Do đó: MBHC là tứ giác nội tiếp

b: Sửa đề: \(MC\cdot MP=MB\cdot MN\)

Xét ΔMCP vuông tại C và ΔMBN vuông tại B có

\(\widehat{BMN}\) chung

Do đó: ΔMCP\(\sim\)ΔMBN

Suy ra: MC/MB=MP/MN

hay \(MC\cdot MN=MB\cdot MP\)

15 tháng 2 2022

sao lại đường cao NP bạn ? xem lại đề nhé 

15 tháng 2 2022

cho tam giác MNP có MN=MP nội tiếp đường tròn tâm O, các đường cao MA, NB, PC cắt nhau tại H.
a, cm tứ giác MPHC là tứ giác nội tiếp. xác định tâm I của đường tròn ngoại tiếp tức giác đó
b, cm MC. MP= MH.MA
C, cm AB là tiếp tuyến đường tròn tâm I