Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\frac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}=\frac{-5}{3^2}=\frac{-5}{9}\)
\(b)\frac{-11.13^7}{11^5.13^8}=\frac{-1}{11^4.13}\) (Bạn xem thử xem có sai đề không nhé)
\(c)\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}=\frac{2^{10}.3^9\left(3+1\right)}{2^9.3^{10}}=\frac{2.4}{3}=\frac{8}{3}\)
\(d)\frac{5^{11}.7^{12}+5^{11}.7^{11}}{5^{12}.7^{12}+9.5^{11}.7^{11}}=\frac{5^{11}.7^{11}\left(7+1\right)}{5^{11}.7^{11}\left(5.4+9\right)}=\frac{8}{20+9}=\frac{8}{29}\)
\(a)\frac{3^{10}\cdot\left(-5\right)^{21}}{\left(-5\right)^{20}\cdot3^{12}}=\frac{-5}{3^2}=\frac{-5}{9}\)
\(b)\frac{\left(-11\right)\cdot13^7}{11^5\cdot13^8}=\frac{-1}{11^4\cdot13}=\frac{-1}{14641\cdot13}=\frac{-1}{190333}\)
\(c)\frac{2^{10}\cdot3^{10}-2^{10}\cdot3^9}{2^9\cdot3^{10}}=\frac{2^{10}\left(3^{10}-3^9\right)}{2^9\cdot3^{10}}=\frac{2^{10}\cdot3^9\left(3-1\right)}{2^9\cdot3^{10}}=\frac{2^{10}\cdot3^9\cdot2}{2^9\cdot3^{10}}=\frac{2\cdot2}{3}=\frac{4}{3}\)
Bài làm
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{x.\left(x+2\right)}=\frac{2015}{2016}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2015}{2016}\)
\(1-\frac{1}{x+2}=\frac{2015}{2016}\)
\(\frac{1}{x+2}=\frac{1}{2016}\)
\(\Rightarrow x+2=2016\)
\(x=2014\)
\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x.\left(x+2\right)}=\frac{32}{99}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{32}{99}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{x+2}=\frac{32}{99}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{3}-\frac{32}{99}\)
\(\Rightarrow\frac{1}{x+2}=\frac{33}{99}-\frac{32}{99}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{99}\)
\(\Rightarrow x+2=99\)
\(\Rightarrow x=99-2\)
\(\Rightarrow x=97\)
Vậy \(x=97\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{x\cdot\left(x+2\right)}=\frac{32}{99}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{x}-\frac{1}{x+2}=\frac{32}{99}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{x+2}=\frac{32}{99}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{3}-\frac{32}{99}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{99}\)
\(\Rightarrow x+2=99\)
\(\Rightarrow x=99-2\)
\(\Rightarrow x=97\)
Vậy x=97
\(\left(\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{17\times19}\right)\times114-0,2\left(x-1\right)=10\)
\(\Rightarrow\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{19}\right)\right]\times114-0,2x+0,2=10\)
\(\Rightarrow\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{19}\right)\right]\times114+0,2-0,2x=10\)
\(\Rightarrow\frac{8}{57}\times114+0,2-0,2x=10\Rightarrow16+0,2-0,2x=10\)
\(\Rightarrow16,2-0,2x=10\Rightarrow0,2x=16,2-10\Rightarrow0,2x=6,2\Rightarrow x=31\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{96}\)
\(2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}\right)=2.\frac{15}{96}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right).\left(2x+3\right)}=\frac{5}{16}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{5}{16}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{5}{16}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{5}{16}\)
\(\frac{1}{2x+3}=\frac{1}{48}\)
=> 2x + 3 = 48
=> 2x = 48 - 3
=> 2x = 45
=> x = 45/2
\(\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}\cdot\frac{17}{4}-28\cdot\frac{4}{3}\right):\frac{7}{4}\)
\(=\frac{59}{15}-\frac{29}{4}:\frac{7}{4}=\)\(\frac{59}{15}-\frac{29}{7}=\frac{-22}{105}\)
B = \(\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}x\frac{17}{4}-2x\frac{4}{3}\right):\frac{7}{4}\)
= \(\frac{59}{10}x\frac{2}{3}-\left(\frac{119}{12}-\frac{8}{3}\right)x\frac{4}{7}\)
= \(\frac{59}{15}-\frac{29}{4}x\frac{4}{7}=\frac{59}{15}-\frac{29}{7}\)
= \(\frac{-22}{105}\)
C = \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}\)
= \(1-\frac{1}{7}=\frac{6}{7}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)
\(2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right).\left(2x+3\right)}\right)=2.\frac{15}{93}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{\left(2x+1\right).\left(2x+3\right)}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\)
\(\Rightarrow2x=90\)
\(\Rightarrow x=45\)
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)
\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)
\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)
\(\frac{\left(-2\right)^3\cdot3^3\cdot5^3\cdot7\cdot8}{3\cdot5^3\cdot2^4\cdot42}\)
\(=\frac{\left(-2\right)^3\cdot3^3\cdot5^3\cdot7\cdot2^3}{3\cdot5^3\cdot2^3\cdot2\cdot6\cdot7}\)
\(=\frac{\left(-2\right)^3\cdot3^2}{2\cdot6}=\frac{2^2\cdot3^2}{-1\cdot6}=\frac{36}{-6}=-6\)
Vậy .....................
\(\frac{\left(2^3\cdot5\cdot7\right)\cdot\left(5^2\cdot7^3\right)}{\left(2\cdot5\cdot7\right)^2}\)
\(=\frac{2^3\cdot5^3\cdot7^4}{2^2\cdot5^2\cdot7^2}\)
\(=2\cdot5\cdot7^2\)
\(=10\cdot49=490\)
\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7\right)^2}\)
\(=\frac{2^3.5^3.7^4}{2^2.5^2.7^2}\)
\(=2.5.7^2\)
\(=\left(2.5\right).7^2\)
\(=10.49\)
\(=490\)