Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{15}+2\left(1-\frac{1}{10}\right)\)
\(=\frac{4}{15}+\frac{9}{5}\)
\(=\frac{31}{15}\)
Bài làm :
Ta có :
\(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{13\times15}+\frac{2}{1\times2}+\frac{2}{2\times3}+...+\frac{2}{9\times10}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{15}+2\left(1-\frac{1}{10}\right)\)
\(=\frac{31}{15}\)
\(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{5}-\frac{1}{15}=\frac{3}{15}-\frac{1}{15}=\frac{3-1}{15}=\frac{2}{15}\)
P/s : Dấu chấm là nhân nhé!
\(=\frac{7-5}{5x7}+\frac{9-7}{7x9}+\frac{11-9}{9x11}+...+\frac{15-13}{13x15}=\)
\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{13}-\frac{1}{15}=\frac{1}{5}-\frac{1}{15}=\frac{2}{15}\)
\(\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\)
\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+....-\frac{1}{15}\)
\(=\frac{1}{5}-\frac{1}{15}=\frac{2}{15}\)
\(\frac{3}{5×3}+\frac{3}{5×7}+\frac{3}{7×9}+\frac{3}{9×11}+\frac{3}{11×13}\)
\(=\frac{3}{2}×\left(\frac{2}{3×5}+\frac{2}{5×7}+\frac{2}{7×9}+\frac{2}{9×11}+\frac{2}{11×13}\right)\)
\(=\frac{3}{2}×\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{3}{2}×\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{3}{2}×\left(\frac{13}{39}-\frac{3}{39}\right)\)
\(=\frac{3}{2}×\frac{10}{39}\)
\(=\frac{5}{13}\)
\(\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+\frac{3}{11.13}\)
\(=\frac{3}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{ 1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11} +\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{3}{2}.\frac{10}{39}\)
\(=\frac{15}{39}\)
B=2/1.3 + 2/3.5 + 2/5.7 +...+ 2/299.301
B=1-1/3+1/3-1/5+1/5-1/7+...+1/299-1/301=1-1/301=300/301
\(Ta có: \frac{2}{3}=\frac{1}{1}-\frac{1}{3}\);
\(\frac{2}{15}=\frac{1}{3}-\frac{1}{5}\);
\(\frac{2}{35}=\frac{1}{5}-\frac{1}{7}\) ; ... ; \(\frac{2}{89999}=\frac{1}{299}-\frac{1}{301}\).
=> B= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{299}-\frac{1}{301}\)
=> B=\(\frac{1}{1}-\frac{1}{301}\)
=> B=\(\frac{300}{301}\)
\(\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}\right).y=\frac{2}{3}\)
\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)
\(\left(1-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{2}{3}.\frac{11}{10}\)
\(y=\frac{22}{30}\)
2/5 x 7 + 2/7 x9 + 2 /9 x 11 + ... + 2 /13 x 15
= 1 /5 - 1 /7 + 1/7 - 1/9 + 1/9 - 1/11 + ... + 1 /13 - 1/15
= 1/5 - 1/15
= 2/15
Vậy đáp án là B nhé
Đặt \(A=\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\)
Ta có : \(2A=\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+...+\frac{2}{13}-\frac{2}{15}\)
\(2A=\frac{2}{5}-\frac{2}{15}\)
\(2A=\frac{4}{15}\)
\(A=\frac{4}{15}:2\)
\(A=\frac{2}{15}\)