Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có:
\(f\left(x_1\right)=ax_1+b=0\)
\(f\left(x_2\right)=ax_2+b=0\)
\(\Rightarrow f\left(x_1\right)-f\left(x_2\right)=0-0\)
\(\Rightarrow a\left(x_1-x_2\right)=0\)
\(x_1\ne x_2\Rightarrow x_1-x_2\ne0\)
\(\Rightarrow a=0\)
\(\Rightarrow f\left(x_1\right)=0=0+b\Rightarrow b=0\)
Như vậy với mọi giá trị của x thì đa thức trên luôn bằng 0.
Vậy f(x) là đa thức 0.
a: \(f\left(-2\right)=2\cdot\left(-2\right)^3+\left(-2\right)^2-4\cdot\left(-2\right)-2=-6\)
\(f\left(-1\right)=2\cdot\left(-1\right)^3+\left(-1\right)^2-4\cdot\left(-1\right)-2=-2+1+4-2=1\)
\(f\left(-\dfrac{1}{2}\right)=2\cdot\dfrac{-1}{8}+\dfrac{1}{4}-4\cdot\dfrac{-1}{2}-2=\dfrac{-1}{4}+\dfrac{1}{4}+2-2=0\)
\(f\left(1\right)=2+1-4-2=-3\)
\(f\left(2\right)=2\cdot2^3+2^2-4\cdot2-2=16+4-8-2=10\)
b: Vì f(-1/2)=0 nên -1/2 là một nghiệm của đa thức f(x)
Bạn xem lời giải của mình nhé:
Giải:
P(0) = -3
\(\Rightarrow0^2+a.0+b=-3\\ \Rightarrow b=-3\)
x = 1 là nghiệm của P(x)
\(\Rightarrow P\left(1\right)=0\\ \Rightarrow1^2+a.1+b=0\\ \Rightarrow1+a+b=0\\ \Rightarrow a+\left(-3\right)=0-1\\ \Rightarrow a-3=-1\\ a=-1+3\\ a=2\)
Vậy a=2; b=-3
Chúc bạn học tốt!
Ta có: P(0) = 02 + a.0 + b = 3
=> b = 3
x = 1 là nghiệm của P(x)
=> 12 + a.1 + b = 0 (vì b = 3)
hay 1 + a + 3 = 0
=> 4 + a = 0
=> a = -4
Ta có : \(f\left(x\right)⋮3\) với \(\forall x\in Z\)
\(\Rightarrow f\left(0\right)=a.0^2+b.0+c=0+0+c=c⋮3\)
\(Do\) \(f\left(x\right)⋮3\) với \(\forall x\in Z\)
\(\Rightarrow f\left(1\right)=a.1^2+b.1+c=a+b+c⋮3\left(1\right)\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c⋮3\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(a+b+c\right)-\left(a-b+c\right)=a+b+c-a+b-c=2b⋮3\)
Do 2 ko chia hết cho 3 \(\Rightarrow\) Để \(2b⋮3\) thì \(b⋮3\)
Ta lại có : \(a+b+c⋮3\)
mà \(b⋮3\) ; \(c⋮3\)
\(\Rightarrow\) Để tổng trên chia hết cho 3 thì a \(⋮3\)
Vậy a,b,c \(⋮3\)
Lời giải:
Vì $f(x)$ chia hết cho $3$ với mọi \(x\in\mathbb{Z}\) nên ta có:
\(\left\{\begin{matrix} f(0)=c\vdots 3\\ f(1)=a+b+c\vdots 3 3\\ f(-1)=a-b+c\vdots 3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c\vdots 3\\ a+b\vdots 3(1)\\ a-b\vdots 3 (2) \end{matrix}\right.\)
Từ \((1),(2)\Rightarrow 2a\vdots 3\). Mà $2$ không chia hết cho $3$ nên $a$ chia hết cho $3$
Có $a+b$ chia hết cho $3$ và $a$ chia hết cho $3$ nên $b$ cũng chia hết cho $3$
Do đó ta có đpcm
a: \(F\left(x\right)=x^4+6x^3+2x^2+x-7\)
\(G\left(x\right)=-4x^4-6x^3+2x^2-x+6\)
b: h(x)=f(x)+g(x)
\(=x^4+6x^3+2x^2+x-7-4x^4-6x^3+2x^2-x+6\)
\(=-3x^4+4x^2-1\)
c: Đặt h(x)=0
\(\Leftrightarrow3x^4-4x^2+1=0\)
\(\Leftrightarrow\left(3x^2-1\right)\left(x^2-1\right)=0\)
hay \(x\in\left\{1;-1;\dfrac{\sqrt{3}}{3};-\dfrac{\sqrt{3}}{3}\right\}\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}1+1+a+b=0\\8+4+2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-2\\2a+b=-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a=10\\a+b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-10\\b=8\end{matrix}\right.\)