Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ở ô cuối cùng số hạt thóc sẽ được viết dưới dạng lũy thừa là:2^63
O cuoi cung so hat thoc se duoc viet duoi dang luy thua:263
Số tập con của tập A gồm n phần tử là 2\(^n\)
Thật vậy, bằng quy nạp ta có :
Với n=0, tập rỗng có 2\(^0\)=1 tập con. .
Với n=1, có 2\(^1\) = 2 tập con là rỗng và chính nó.
Giả sử công thức đúng với n=k. Tức là số tập con của tập hợp gồm k phần tử là 2\(^k\)
Ta phải chứng minh công thức đúng với k+1.
Ngoài 2\(^k\) tập con vốn có, thêm cho mỗi tập cũ phần tử thứ k + 1 thì được một tập con mới. Vậy ta được 2^k tập con mới. Tổng số tập con của tập hợp gồm k + 1 phần tử (tức tổng số tập con của tập gồm 2^k phần tử và tập con mới tạo thành) là : 2^k + 2^k = 2^k . 2 = 2 \(^{k+1}\)
Vậy số tập con của tập A gồm n phần tử là 2\(^n\)
Tập hợp A có số phần tử là:
phần tử 0;2;4 | |
tập hợp con: 0;2;4;02;04;24; | |
Vậy có 6 tập hợp con |
Xét từ 1-100
số chữ số 3 ở hàng đơn vị: (3,13,23,33,43,53,63,73,83,93) 10 chữ số
số chữ số 3 ở hàng chục: (30,31,32,33,34,35,36,37,38,39): 10 chữ số
Như vậy cứ 100 số thì chữ số 3 sẽ xuất hiện 20 lần (chỉ tính ở hàng chục và hàng đơn vị)
Xét từ 1-1000
Sồ chữ số 3 ở hàng chục và hàng đơn vị: 20*10=200(chữ số)
Số chữ số 3 ở hàng trằm (300,301,302,303,...399): 100 chữ số
Vậy số lần chữ số 3 xuất hiện: 100+200=300 (lần)
CHÚC BẠN HỌC TỐT