Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi \(\left(2n-3;n-2\right)=d\)
Ta có: \(\hept{\begin{cases}\left(2n-3\right)⋮d\\\left(n-2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2n-3\right)⋮d\\\left(2n-4\right)⋮d\end{cases}}\)
\(\Rightarrow\left(2n-3\right)-\left(2n-4\right)⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
\(\Rightarrow\left(2n-3;n-2\right)=1\)
=> 2n-3 và n-2 nguyên tố cùng nhau
=> A tối giản
b) \(A=\frac{2n-3}{n-2}=\frac{\left(2n-4\right)+1}{n-2}=2+\frac{1}{n-2}\)
Để A nguyên => \(\frac{1}{n-2}\inℤ\Rightarrow n-2\in\left\{-1;1\right\}\)
=> \(n\in\left\{1;3\right\}\) với n nguyên
a) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\right)\)
\(2A=1-\frac{1}{3^n}\)
\(A=\frac{1-\frac{1}{3^n}}{2}\)
b) Gọi số cần tìm là ab (a khác 0; a,b là các chữ số)
Ta có: ab.75 = x2 \(\left(x\ne0\right)\)
=> ab.3.52 = x2
Để ab.75 là 1 số chính phương thì ab = 3.k2 \(\left(k\ne0\right)\)
Lại có: 9 < ab < 100 => 9 < 3.k2 < 100
=> 3 < k2 < 34
Mà k2 là số chính phương nên \(k^2\in\left\{4;9;16;25\right\}\)
\(\Rightarrow ab\in\left\{12;27;48;75\right\}\)
Vậy số cần tim là 12; 27; 48; 75
c) Đặt \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\)
\(3B=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\)
\(3B-B=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\right)\)
\(2B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(6B=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\)
\(6B-2B=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\right)\)
\(4B=3-\frac{101}{3^{100}}-\frac{1}{3^{100}}+\frac{101}{3^{101}}\)
\(4B=3-\frac{303}{3^{101}}-\frac{3}{3^{101}}+\frac{101}{3^{101}}\)
\(4B=3-\frac{205}{3^{101}}< 3\)
\(\Rightarrow B< \frac{3}{4}\)
a) Khi n = 10 có:
\(A=\frac{10-5}{10+1}=\frac{5}{11}\)
b) Khi n = 0
\(A=\frac{0-5}{0+1}=-\frac{5}{1}=-5\)
c) Để A thuộc Z thì n - 5 chia hết cho n + 1
=> n - 6 + 1 chia hết cho n + 1
=> n + 1 chia hết cho n + 1 => -6 chia hết n + 1
=> n + 1 thuộc Ư (6) = {1;2;3;6;-1;-2;-3;-6}
=> n thuộc {0;1;2;5;-2;-3;-4;-7}
d. Để A tối giản thì n = {0;5;-2}
Khi n = 0 ta có :
\(A=\frac{0-5}{0+1}=\frac{-5}{1}\)