K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

Nếu đề là tìm n để phím chia hết thì làm như sau
 n^2 +3n -7 : n-3
n(n+3)-7: n-3
 vì n(n+3) chia hết cho n+3 nên để n^2 +3n -7 chia hết cho n+3 thì -7 chia hết cho n+3
=> n+3 thuộc Ư(7)={1,7,-1,-7}
n+3=1 => n= -2
n+3=7 => n= 4
n+3 = -1 => n=-4
n+3=7 => n =-10
 

b, n^2 +5 : n+1 
n^2 -1+6 : n+1
(n-1)(n+1) + 6: n+1         ( n^2 -1 =(n+1)(n-1) là dùng hằng đẳng thức lớp 8 sẽ học)
vì (n-1)(n+1) chia hết cho n+1 nên để n^2 +5 chia hết n+1 thì 6 phải chia hết cho n+1
=> n+1 thuộc Ư(6)={1,2,3,6,-1,-2,-3,-6}
n+1 =1 =>n=0
n+1=2=>n=1
n+1=3=>n=2
n+1=6=>n=5
n+1=-1=>n=-2
n+1=-2=>n=-3
n+1=-3=>n=-4
n+1=-6=>n=-7

8 tháng 1 2019

a,A=|x-7|+12

  Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)

  Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7

  Vậy GTNN của A là 12 khi x = 7

b,B=|x+12|+|y-1|+4

   Vì \(\left|x+12\right|\ge0\forall x\)

        \(\left|y-1\right|\ge0\forall y\)

   nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)

      \(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)

Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)

Vậy GTNN của B là 4 khi x = -12 và y = 1

8 tháng 1 2019

cậu có thể làm những ý khác ko

8 tháng 1 2019

Khó thế!!!

8 tháng 1 2019

\(1a,A=\left|5-x\right|+\left|y-2\right|-3\)

Vì \(\left|5-x\right|\ge vs\forall x,\left|y-2\right|\ge vs\forall y\Rightarrow A\ge3\)

Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|5-x\right|=0\\\left|y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5-x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)

Vậy \(A_{min}=3\Leftrightarrow x=5,y=2\)

\(b,B=\left|4-2x\right|+y^2+\left(2-1\right)^2-6\)

\(=\left|4-2x\right|+y^2-5\)

Vì \(\left|4-2x\right|\ge vs\forall x;y^2\ge0vs\forall y\Rightarrow B\ge-5\)

Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4-2x\right|=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4-2x=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)

Vậy \(B_{min}=-5\Leftrightarrow x=2,y=0\)

\(c,C=\frac{1}{2}-\left|x-2\right|\) ( bn xem lại đề nhé )

26 tháng 11 2018

\(10^3.100^2.1000^5\)

=\(10^3.10^5.10^{15}\)

=\(10^{23}\)

b) \(16.64.8^2:\left(4^3.2^5.16\right)\)

=\(2^4.2^6.2^6:\left(2^6.2^5.2^4\right)\)

=\(2^{10}.2^6:\left(2^{11}.2^4\right)\)

=\(2^{16}:2^{15}\)

=2

c) \(\left(20.2^4+12.2^4-48.2^2\right):8^2\)

\(\left[2^4.\left(20+12\right)-48.2^2\right]:8^2\)

\(\left[16.32-48.4\right]:64\)

=  \(\left[512-192\right]:64\)

=  \(320:64\)

\(5\)

Câu d thì mình chưa hiểu đề bài thì bạn viết lại hộ mình để mình giải cho

26 tháng 11 2018

bạn ơi đề bài đúng rôi đấy . nhưng mong bạn làm cho mik ý a và ý d để mik còn nộp bài

22 tháng 2 2020

thì nó là tối giản rồi còn gì

22 tháng 2 2020

nè mình

(n+5)/(n+1)=[(n+1) +4]/(n+1) 
=1 +4/(n+1) 
chia hết khi VP là số tự nhiên 
---> 4/(n+1) là số tự nhiên 
--> n+1 bằng 1,2,4 
---> n bằng 0, 1 , 3

và ngược lại  

24 tháng 1 2016

n-1 chia hêt cho n+5

=>n+5-6 chia hết cho n+5

=>6 chia hết cho n+5

=>n+5 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}

=>n thuộc{-6;-4;-7;-3;-11;1}

n + 5 chia hết cho n - 1

=>n-1+6 chia hết cho n-1

=>6 chia hết cho n-1

=>n-1 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}

=>n thuộc {0;2;-1;3;-2;4;-5;7}

3 tháng 12 2015

ko chug minh đc đâu bn, hình như đề sai oy