Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
b: Xét tứ giác AMNE có
AM//NE
AM=NE
Do đó: AMNE là hình bình hành
c: Xét ΔAHD có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHD cân tại A
mà AM là đường cao
nên AM là tia phân giác của góc HAD(1)
Xét ΔAHE có
AN là đường cao
AN là đường trung tuyến
Do đó:ΔAHE cân tại A
mà AN là đường cao
nên AN là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{MAH}+\widehat{NAH}\right)=2\cdot90^0=180^0\)
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
b: Xét tứ giác AMNE có
AM//NE
AM=NE
Do đó:AMNE là hình bình hành
c: Xét ΔAHD có
AM là đường cao
AM là đường trung tuyến
Do đó:ΔAHD cân tại A
mà AB là đường cao
nên AB là tia phân giác của HAD(1)
Xét ΔAHE có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{EAD}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=180^0\)
=>E,A,D thẳng hàng
mà AE=AD
nên A là trung điểm của DE