K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)

20 tháng 6 2019

Em thử ạ. Bài dài quá em chẳng biết có tính sai chỗ nào hay không nữa ;(

Từ giả thiết ta có: 

\(\hept{\begin{cases}x+y=-\frac{2}{3}\left(z+1\right)\\xy=-\frac{1}{3}\end{cases}}\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy=\frac{4}{9}\left(z+1\right)^2+\frac{2}{3}\)

Và \(\left(x-y\right)^2=\left(x+y\right)^2-4xy=\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}\)

Ta có: \(A=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)+\left(z+1\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)}{\left(x-y\right)^3}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-\frac{1}{3}\right)+\left(z+1\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)}{\left(x-y\right)^3}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\left(x-y\right)^3}\)

\(=\frac{\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\left(x-y\right)^2}\)

\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-\frac{2}{9}\left(z+1\right)^2+\frac{1}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)

\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-\frac{2}{9}\left(z+1\right)^2+\frac{1}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)

Ơ....hình như em tính sai chỗ nào rồi:(

20 tháng 6 2019

Nguyễn Khang 

\(A=\frac{\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)

\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2-1\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\) ( như này mới đúng, e thiếu -1 ở tử ) 

\(=\frac{\frac{-2}{9}\left(z+1\right)^2-\frac{2}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=-\frac{1}{2}.\frac{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-1}{2}\)

13 tháng 3 2021

Giả sử tồn tại x, y, z, t thỏa mãn.

Ta chứng minh bổ đề: Cho \(a,b\in\mathbb{Z}\). Khi đó \(a^2+b^2\vdots 3\Leftrightarrow a,b\vdots 3\).

Thật vậy, ta thấy nếu \(a,b\vdots 3\Rightarrow a^2+b^2\vdots 3\).

Nếu \(a^2+b^2\vdots 3\): Do \(a^2,b^2\equiv0;1\left(mod3\right)\) nên ta phải có \(a^2,b^2\equiv0\left(mod3\right)\Rightarrow a,b⋮3\).

Bổ đề dc cm.

Trở lại bài toán: Ta có 2019 chia hết cho 3 nên \(x^2+y^2⋮3\Rightarrow x,y⋮3\Rightarrow x^2+y^2⋮9\).

Mà 2019 không chia hết cho 9 nên \(z^2+t^2⋮3\Leftrightarrow z,t⋮3\).

Đặt x = 3x', y = 3y', z = 3z', t = 3t'.

Ta có \(2019=\dfrac{x^2+y^2}{z^2+t^2}=\dfrac{x'^2+y'^2}{z'^2+t'^2}\).

Cmtt, ta có \(x',y',z',t'⋮3\).

Lặp lại nhiều lần như vậy, ta có \(x,y,z,t⋮3^k\forall k\in N\).

Do đó x = y = z = t = 0 (vô lí).

Vậy không tồn tại...

23 tháng 6 2019

\(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\frac{1}{x^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{z}+\frac{1}{x}\right)}\)

\(=\frac{xyz}{xy\left(\frac{1}{x}+\frac{1}{y}\right)zx\left(\frac{1}{z}+\frac{1}{x}\right)}=\frac{xyz}{\left(x+y\right)\left(z+x\right)}\)

Tương tự, ta cũng có: \(\frac{2y}{1+y^2}=\frac{2xyz}{\left(x+y\right)\left(y+z\right)}\)\(;\)\(\frac{3z}{1+z^2}=\frac{3xyz}{\left(y+z\right)\left(z+x\right)}\)

\(VT=\frac{xyz}{\left(x+y\right)\left(z+x\right)}+\frac{2xyz}{\left(x+y\right)\left(y+z\right)}+\frac{3xyz}{\left(y+z\right)\left(z+x\right)}\)

\(=\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) ( đpcm )